
Flexible RDF generation from RDF and heterogeneous
data sources with SPARQL-Generate�

Maxime Lefrançois, Antoine Zimmermann, and Noorani Bakerally

Univ Lyon, MINES Saint-Étienne, CNRS, Laboratoire Hubert Curien UMR 5516,
F-42023 Saint-Étienne, France

firstname.lastname@emse.fr

Abstract. RDF aims at being the universal abstract data model for structured
data on the Web. While there is effort to convert data in RDF, the vast majority
of data available on the Web does not conform to RDF. Indeed, exposing data
in RDF, either natively or through wrappers, can be very costly. In this context,
transformation or mapping languages that define generation of RDF from non-
RDF data represent an efficient solution. Furthermore, the declarative aspect of
these solutions makes them easy to adapt to any change in the input data model,
or in the output knowledge model. This paper introduces a novel such transfor-
mation language (SPARQL-Generate), an extension of SPARQL for querying not
only RDF datasets but also documents in arbitrary formats. Its implementation on
top of Apache Jena currently covers use cases from related work and more, and
enables to query and transform web documents in XML, JSON, CSV, HTML,
CBOR, and plain text with regular expressions.

Keywords: RDF, SPARQL, linked data, data transformation

1 Introduction

The vision of a Semantic Web where machines can more easily process web content is
hampered by the coexistence of many, heterogeneous data formats and models available
on the Web or via the Web. At first sight, this vision seems to require a worldwide
adoption of a common universal data model as a document format (namely, RDF).
Yet, in the emerging Web of Data, a multitude of formats are flourishing: XML (not
RDF/XML) is still very present, open data portals tend to prefer CSV, web APIs rely
more on JSON, and the Web of Things introduces new formats adapted to the resource
constraints inherent to less powerful devices.

In this context, transformation or mapping languages that define generation of RDF
from non-RDF data represent an efficient solution. Furthermore, the declarative aspect
of these solutions makes them easy to adapt to any change in the input data model, or
in the output knowledge model. In this paper, we use term RDF lifting to designate the
process of generating RDF from non-RDF data.

� This paper has been partly funded by the ITEA2 12004 SEAS (Smart Energy Aware Sys-
tems) project, the ANR 14-CE24-0029 OpenSensingCity project, and a research contract with
ENGIE R&D.

Section 2 first overviews existing initiatives and evaluates them with respect to a set
of identified requirements. Then section 3 introduces SPARQL-Generate, a language
that can be used to specify a mapping from distributed data sources in arbitrary data
formats to the RDF data model. Section 4 concludes and identifies directions for future
work.

2 Requirements for RDF Lifting Mechanisms

From the use cases faced by industrial partners in collaborative projects we are involved
in, we identified the following set of requirements for a RDF lifting mechanisms. It
should:

– be able to generate RDF from multiple sources in heterogeneous formats;
– be able to deal with text-based and binary representation formats;
– make it easy to combine non-RDF sources with RDF data;
– be extensible to account for new syntaxes;
– integrate seamlessly with existing standards for consuming Semantic Web data,

such as SPARQL or Semantic Web programming frameworks.

Several systems exist for converting data to RDF. We are interested only in systems
that provide a formal transformation language, potentially mapping-based.1 Such lan-
guages include GRDDL [1], XSPARQL [5], R2RML [2], RML [3], and CSVW [6].
Table 1 overviews the comparison of these solutions with respect to the identified re-
quirements. GRDDL and XSPARQL rely respectively on XSLT and XQuery, that have
been proven to be Turing-complete. These languages are hence full-fledged procedural
programming language with explicit algorithmic constructs to produce RDF. We argue
that a procedural paradigm is less suited to semantic web engineers, who may be more
familiar with a declarative paradigm such as SPARQL. Furthermore, only RML and
XSPARQL are specifically dedicated to generate RDF from various formats, namely
XML, CSV, HTML, and JSON. However, to our knowledge, they do not accept bi-
nary formats such as EXI, CBOR or BSON, which become of much importance in the
emerging Web of Things.

3 SPARQL-Generate

SPARQL-Generate extends SPARQL 1.1 with only three new clauses, generate, source
and iterator. It queries the combination of an RDF dataset and zero or more named
documents. Each document is interpreted as a literal and is associated with an IRI, thus
forming what we call a literalset. Below is an example of a SPARQL-Generate query,2

more complex examples can be found online.3

1 A lot of hardcoded transformation are available for many formats – https://www.w3.org/

wiki/ConverterToRdf.
2 Prefixes are omitted to save space.
3
http://w3id.org/sparql-generate/tests-reports.html

Table 1: Features of related work compared to the SPARQL Generate language.
GRDDL CSVW R2RML XSPARQL RML

SPARQL-Generate
[1] [6] [2] [5] [3]

produces RDF X X X X X X
multiple source X X X X X

heterogeneous formats X X X
binary formats X

combines RDF data X X X
extensibility XSLT XQuery ad-hoc SPARQL

Document airport.csv
id,stop,latitude,longitude
6523,25,50.901389,4.484444
7000,40,56.901389,4.584444

Output (in turtle)
<http://ex.com/6523>
a transit:Stop;
transit:route 21;
geo:lat 50.901389;
geo:long 4.484444 .

SPARQL-Generate request
GENERATE {
?airport a transit:Stop;

transit:route ?route;
geo:lat ?lat;
geo:long ?long . }

SOURCE <http://ex.com/airport.csv> AS ?source
ITERATOR iter:CSV(?source) AS ?busStop
WHERE {

BIND(fn:CSV(?busStop, "id") AS ?id)
BIND(xsd:int(fn:CSV(?busStop, "stop")) AS ?route)
BIND(fn:CSV(?busStop, "longitude") AS ?long)
BIND(fn:CSV(?busStop, "latitude") AS ?lat)
BIND (URI(CONCAT("http://ex.com/",?id)) AS ?airport)
FILTER(?route < 30) }

Implementation on top of Apache Jena SPARQL-Generate has been implemented on
top of Apache Jena. It is available as open-source on GitHub.4 It can be used as a
Maven dependency, via a Web API, via a web form that itself uses the Web API, or as
an executable jar. All of these tools may be found on the demonstration website:

http://w3id.org/sparql-generate

Supported data formats, and extensibility. Binding and iterator functions are avail-
able for the following formats: XML (exploiting XPath), CSV, TSV (conforming to the
RFC 4180, or custom), HTML (exploiting CSS3 selectors), JSON and CBOR (exploit-
ing JSONPath), and plain text (exploiting regular expressions). A complete documen-
tation of the available binding and iterator functions is available at http://w3id.org/

sparql-generate/functions.html.
The implementation relies on Jena’s SPARQL binding function extension mecha-

nism, and copies it for iterator functions. Therefore, covering a new data format in this
implementation merely consists in implementing new binding and iterator functions in
Jena. Even what is not covered by existing query languages can be implemented as an
iterator function. For instance, iterator function iter:JSONListKeys iterates on key names
of a JSON object, which is not feasible using JSONPath.

4
https://github.com/thesmartenergy/sparql-generate

4 Future Work and Conclusion

Future plans consist of implementing more functions for more data formats, enabling
on-the-fly function integration with an approach similar to [4], and adding some syn-
tactic sugars that could strongly improve readability and conciseness of the queries.
For instance one could use binding functions directly in the generate pattern, or use
curly-bracket expressions instead of concatenating literals. Using such techniques, the
example query from section 3 could be shortened as follows:
GENERATE {
<http://ex.com/{?id}> a transit:Stop;

transit:route ?route ;
geo:lat xsd:decimal(fn:CSV(?busStop, "latitude"));
geo:long xsd:decimal(fn:CSV(?busStop, "longitude")). }

SOURCE <http://ex.com/airport.csv> AS ?source
ITERATOR iter:CSV(?source) AS ?busStop
WHERE {

BIND(fn:CSV(?busStop, "id") AS ?id)
BIND(xsd:int(fn:CSV(?busStop, "stop")) as ?route)
FILTER(?route < 30) }

The problem of exploiting data from heterogeneous sources and formats is common
on the Web, and Semantic Web technologies can help in this regard. We introduced
SPARQL-Generate, that extends the SPARQL language in its ability to generate RDF
graphs, such that any non-RDF data sources, as well as RDF sources, can be exploited
to create an output RDF graph. Its syntax closely matches SPARQL with little additions,
and hence combines the following advantages: (i) it may be implemented on existing
SPARQL engines; (ii) it is modular since extensions to new formats do not require a
redefinition of the language (thanks to the use of SPARQL custom functions); and (iii)
it is easy to learn by Semantic Web specialists that know SPARQL 1.1. Our implemen-
tation on top of Apache Jena covers many use cases, as reported on the dedicated web
site http://w3id.org/sparql-generate.

References

1. Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages (GRDDL). W3C
Recommendation, 2007. http://www.w3.org/TR/2007/REC-grddl-20070911/.

2. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF Mapping Lan-
guage. W3C Recommendation, 2012. http://www.w3.org/TR/2012/REC-r2rml-20120927/.

3. Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens, and
Rik Van de Walle. RML: A Generic Language for Integrated RDF Mappings of Heteroge-
neous Data. In Proceedings of the Workshop on Linked Data on the Web (LDOW 2014), 2014.

4. Maxime Lefrançois and Antoine Zimmermann. Supporting Arbitrary Custom Datatypes in
RDF and SPARQL. In Proceedings of the Extended Semantic Web Conference (ESWC 2016),
2016.

5. Axel Polleres, Thomas Krennwallner, Nuno Lopes, Jacek Kopecký, and Stephan Decker.
XSPARQL Language Specification. W3C Member Submission. http://www.w3.org/

Submission/2009/SUBM-xsparql-language-specification-20090120/.
6. Jeremy Tandy, Ivan Herman, and Greg Kellogg. Generating RDF from Tabular Data on the

Web. W3C Recommendation. http://www.w3.org/TR/2015/REC-csv2rdf-20151217/.

