
Managing interrelated project information in AEC Knowledge Graphs

Mads Holten Rasmussena,∗, Maxime Lefrançoisb, Pieter Pauwelsc, Christian Anker Hviida, Jan Karlshøja

aTechnical University of Denmark, Department of Civil Engineering, Denmark
bMines Saint-Étienne, Univ Lyon, Univ Jean Monnet, IOGS, CNRS, UMR 5516, LHC, Institut Henri Fayol, F-42023

Saint-Étienne France
cGhent University, Department of Architecture and Urban Planning, Belgium

Abstract

In the Architecture, Engineering and Construction (AEC) industry stakeholders from different companies
and backgrounds collaborate in realising a common goal being some physical structure. The exact goal is
typically not known from the beginning, and throughout all design stages, new decisions are made - similarly
to other design industries [1]. As a result, the design must adapt and subsequent consequences follow.
With working methods being predominantly document-centric, highly interrelated and rapidly changing
design data in a complex network of decisions, requirements and product specifications is primarily captured
in static documents. In this paper, we consider a purely data-driven approach based on semantic web
technologies and an earlier proposed Ontology for Property Management (OPM). The main contribution of
this work consists of extensions for OPM to account for new competency questions including the description
of property reliability and the reasoning logic behind derived properties. The secondary contribution is
the specification of a homogeneous way to generate parametric queries for managing an OPM-compliant
AEC Knowledge Graph (AEC-KG). A software library for operating an OPM-compliant AEC-KG is further
presented in the form of an OPM Query Generator (OPM-QG). The library generates SPARQL 1.1 queries to
query and manipulate construction project Knowledge Graphs represented using OPM. The OPM ontology
aligns with latest developments in the W3C Community Group on Linked Building Data and suggests
an approach to working with design data in a distributed environment using separate graphs for explicit
facts and for materialised, deduced data. Finally, we evaluate the suggested approach using an open-
source software artefact developed using OPM and OPM-QG, demonstrated online with an actual building
Knowledge Graph. The particular design task evaluated is performing heat loss calculations for spaces
of a future building using an AEC-KG described using domain- and project specific extensions of the
Building Topology Ontology (BOT) in combination with OPM. With this work, we demonstrate how a
typical engineering task can be accomplished and managed in an evolving design environment, thereby
providing the engineers with insights to support decision making as changes occur. The application uses a
strict division between the client viewer and the actual data model holding design logic, and can easily be
extended to support other design tasks.

Keywords: Linked Data, Building Information Modeling, Complex design, Ontology, Inference,
Information Exchange, BIM, AEC Knowledge Graph, Linked Building Data

1. Introduction

The architecture, engineering and construction
(AEC) industry is a fragmented industry, with
information spread between numerous, changing

∗Corresponding author
Email address: mhoras@byg.dtu.dk (Mads Holten

Rasmussen)

stakeholders, including architects, engineers, con-
tractors, subcontractors, owners, and so forth. This
is one of the reasons why Bertelsen [2] describes it
as a complex industry. All these stakeholders have
varying levels of proficiency in digital technologies.
With the advent of Building Information Modeling
(BIM) tools, these varying levels of proficiency have
become more apparent. They are often referred to

Preprint submitted to Elsevier September 3, 2019

as levels of maturity or levels of BIM adoption in
the industry, and there exist frameworks for quan-
tifying these [3, 4].

1.1. Document Exchanges at the Heart of AEC
Project Design Workflows

Winch [5] describes that construction project
teams can, in essence, be considered as informa-
tion processing systems. This definition empha-
sises why an unobstructed information exchange
between project teams is essential – an observa-
tion which is also backed up in various analyses
of the construction industry [6, 7, 1]. The situa-
tion in the industry is, however, not without obsta-
cles. Notwithstanding the significant shift towards
BIM tools and digital tools in general in the con-
struction industry, many project participants are
still working in a highly document-centric manner
where data is stored in a static, fragmented fash-
ion in multiple heterogenous formats [8, 9]. Also,
BIM-based workflows are often heavily document-
or model-based, as the focus is on the exchange of
files for achieving interoperability (BIM Level 2 as
described in the PAS 1192 Specification [4]).

To make matters worse, design changes occur
rapidly during the design, engineering and con-
struction phases, so substantial rework must be
done. Tracking design changes becomes a compli-
cated task as these are often only documented in
meeting memos, mail correspondences, on a Post-
it on the project manager’s table, or solely in the
memory of the project participants [10, 11, 9]. As a
result, the effects of a design change are so opaque
that the consequences are hard to judge, some-
times resulting in critical after-effects, also in cur-
rent BIM-based workflows. Further, substantial in-
formation losses occur each time an employee leaves
the project [12].

Current BIM implementations do improve mat-
ters somewhat, as data structure and standard-
isation challenges are addressed. However, the
fact that the majority of the industry is entirely
document-centric, still has quite a big impact as
well. No matter how much standardisation is put
into file formats and exchanges, document-centric
approaches result in parsing, interpretation, seriali-
sation and deserialisation workflows that are bound
to bring about inefficiencies and errors.

1.2. Shifting from the Exchange of Documents to
the Management of AEC Knowledge Graphs

Considering that most documents are simply
representations of data, we focus on the following
research question in this paper:

How can we effectively store design data in
a structured way, allowing interrelated data
to maintain their relations intact as the
project progresses, without losing the history
of properties’ progression?

Recent research efforts have proposed the use
of semantic web technologies to overcome the
document-based attitude and enhance interoper-
ability [13]. One main component of the seman-
tic web is the design of ontologies which are by
Studer et al. [14] defined as “a formal, explicit spec-
ification of a shared conceptualization.” ’Formal’
refers to the fact that it must be machine-readable.
’Explicit’ means that the concepts used and the
constraints on their use are explicitly defined, and
’Shared’ entails that it describes consensual knowl-
edge which is accepted by a group. With this work,
we investigate existing ontologies in order to satisfy
the Data on the Web best practice that consists in
reusing existing vocabularies where applicable [15].
We consider what additional terminology is needed
to answer the above research question, thereby pro-
viding such shared conceptualisation – this termi-
nology, together with the project-specific assertions
of a particular project, form what we in this article
refer to as the AEC-KG.

1.3. Running Example: Calculation of Heating De-
mands for Spaces in a Building

We define a typical design task, conducted as part
of a building design process that the research ques-
tion can be evaluated against. The particular task
is the calculation of heating demands for spaces in
a building. The heating demand of a space is cal-
culated for a steady state winter condition speci-
fied for the region in which the building is located
and it has two components being (1) the infiltra-
tion heat loss which is constituted by the undesired
ventilation through leaks, and (2) the transmission
heat loss through the building envelope. The mag-
nitude of the infiltration heat loss is dependent on
the temperature difference between the air in the
space and the outdoor as well as the ventilation
rate which is typically estimated by the engineer as

2

a function of the space volume. The total trans-
mission heat loss of a space is the sum of the in-
dividual building envelope segments that face the
space. Each transmission heat loss is dependent on
the geometric properties of the segment, the ther-
mal properties of the particular building element
and the temperature difference over the segment.
During the design stages, the building’s geometry
occasionally changes, and this has consequences for
both components of the space heat loss. Further,
the resulting heating demands define the boundary
conditions for the devices that heat up the spaces.
These devices further constitute the boundary con-
dition for the heating distribution system and hence
all its sub-components. Therefore, this design task
involves multiple information exchanges, and in a
design practice with successive design iterations, it
is a challenge that these exchanges are not handled
dynamically. As the project evolves, this leads to
inconsistencies, and it becomes a labour intensive
task to assess the consequences.

1.4. Overview of the Outline of the Article and the
Main Contributions

In this article, we will first give a brief overview
of the state of the art in the use of semantic web
technologies in the AEC industry along with an in-
troduction to this topic (Section 2). Then, in Sec-
tion 3, we will explain the design of the Ontology for
Property Management (OPM) and give brief exam-
ples and indications of how the ontology, in combi-
nation with existing ontologies, can be used to keep
track of the history, reliability and provenance of a
property of some Feature of Interest (FoI). With
FoIs, we refer to anything of relevance in a build-
ing to an AEC expert. This includes either spatial
elements (spaces, zones, storeys), physical elements
(walls, windows, heaters, sensors) or abstract el-
ements (interfaces, systems, concepts). The core
of OPM dealing with property change management
was already presented in [16], but we extend it here
also to provide terminology for describing property
reliability, derived properties and calculations for
formalising reasoning logic (Section 3). The on-
tology extensions for describing property reliabil-
ity and calculations along with best practice mod-
elling examples are the first and main contribution
of this work. The second contribution is the speci-
fication of a standardised way to generate paramet-
ric queries for managing an OPM-compliant AEC-
KG. In Section 4, considerations concerned with

this management is discussed in detail and in Sec-
tion 5, a JavaScript-based Application Program-
ming Interface (API) that facilitates the creation
of uniform, reliable queries for retrieving, creating
and updating OPM properties and calculations is
presented. The API provides a crucial addition
to the proposed OPM ontology. Namely, consid-
ering the expressiveness and complexity of OPM,
end-user applications wishing to implement the pro-
posed property management need a middeware that
allows them to define the desired queries towards an
OPM-compliant AEC-KG. The OPM Query Gen-
erator (OPM-QG) provides a reference implemen-
tation of such a middleware API. In Section 6, we
demonstrate a Proof of Concept (PoC) open-source
implementation built on top of the OPM infras-
tructure which assesses the practical design case
described above. This software is demonstrated on-
line with an actual building Knowledge Graph. The
architecture and considerations in this regard are
discussed in detail in this section. Finally, we con-
clude the work and present our visions for future
work.

2. State of the Art

In this section, we first investigate existing re-
search efforts and communities dealing with de-
scribing AEC knowledge in graphs. We then look
into different approaches to property assignment
and what benefits each of these possesses. Lastly,
we look into existing efforts in dealing with the han-
dling of property interdependencies and deduction
of implicit knowledge from BIM models.

2.1. Web Ontologies for AEC Knowledge Graphs

Researchers in the linked data and semantic web
domain have recently aimed at making building
data available on the web, linking data rather than
documents [17, 18]. This group of researchers in
the AEC domain has been gathering behind the
recent initiatives around linked data in architec-
ture and construction, which includes the Linked
Data Working Group (LDWG) in buildingSMART
International (bSI)1, and the Linked Building Data
(LBD) Community Group2 at the World Wide Web
Consortium (W3C). In both standardisation bod-
ies, ontologies are proposed for capturing building

1http://www.buildingsmart-tech.org/future/linked-
data

2https://w3.org/community/lbd/

3

http://www.buildingsmart-tech.org/future/linked-data
http://www.buildingsmart-tech.org/future/linked-data
https://w3.org/community/lbd/

data using web technologies. The groups focus on
the use of semantic web technologies, namely the
Web Ontology Language (OWL) and the Resource
Description Framework (RDF) [19, 20], thus cre-
ating smaller aligned ontologies and putting them
on a track towards standardisation. Aligned in this
regard meaning that they extend or comply with
terminology from the other ontologies.

buildingSMART is the standardisation organ
who maintains the standard exchange format for
BIM data models: the Industry Foundation Classes
(IFC) standardised by ISO 16739 [21].

The LDWG remains entirely in the buildingS-
MART realm, focusing mainly on the production
of the ifcOWL ontology3 [22], which was initially
proposed by Beetz et al. [23]. The ifcOWL on-
tology is set up to be a direct translation from
the IFC schema represented in the EXPRESS data
modelling language [24] into an OWL representa-
tion. This has resulted in an extensive ontology,
much unlike many of the existing ontologies in var-
ious other domains, that are typically more narrow
scoped and depend on extensions enabled by linked
data principles. For this reason, there have also
been various attempts on simplifying this ontol-
ogy. For example, Terkaj and Pauwels [25] worked
on the modularisation of this ontology. Other ap-
proaches like IFCWoD (IFC Web of Data) [26],
SimpleBIM [27], and BimSPARQL [28] aimed at
providing simplified views over ifcOWL data. IFC-
WoD implements a set of rules within the triple
store; SimpleBIM implements rewrite rules in code;
and BimSPARQL simplifies ifcOWL data by ex-
tending the query language for RDF, SPARQL
[29], with rewrite rules and geometry calculation
algorithms. None of the simplification approaches
proposes and defines an explicit OWL ontology.
The BIM Shared Ontology (BIMSO) and BIM De-
sign Ontology (BIMDO) together constitute an-
other modularity approach with ontologies that are
designed from scratch and, therefore, have no con-
nection to IFC. BIMSO has a minimal core and
builds on the UNIFORMAT II classification sys-
tem and BIMDO provides specific terminology for
design [30]. These are, unfortunately, not publicly
available.

The W3C LBD Community Group, has focused
mostly on the creation of ontologies for captur-
ing building information from close to scratch. By

3http://www.buildingsmart-tech.org/ifcOWL/IFC4#

starting from close to scratch, ontology engineer-
ing best practices can be more easily maintained.
For example, it is possible to reuse existing ontolo-
gies and develop minimal extensions in a modular
fashion. This is possible because RDF uses Inter-
national Resource Identifiers (IRIs) to denote re-
sources (i.e. something in the world) [20]. The
Linked Data rules [31] further requires the use of
HyperText Transfer Protocol (HTTP) IRIs like the
ones used when browsing the web, thereby making
it possible to provide useful information about a re-
source when someone looks it up in a web browser.

The W3C group currently focuses on the devel-
opment and maintenance of a Building Topology
Ontology (BOT) [32] and demonstrating best prac-
tices for publishing building products and associ-
ated properties on the web using Linked Building
Data principles.

BOT was originally proposed by
Rasmussen et al. [33] who examined existing
ontologies in the scope of buildings and found
that they all redefined the same basic elements
(e.g. spaces, storeys and elements) and topological
relationships between these. Therefore, a minimal,
extensible ontology for this sole purpose was pro-
posed. Later it has been developed as a community
effort by the W3C LBD Community Group [32].

2.2. Three Levels of Complexity for Design Prop-
erty Descriptions

When assigning properties to some FoI, there are
different considerations to illuminate. Is there a
need to assign a physical unit? Is it necessary to
capture metadata such as which property set a cer-
tain property belongs to? Is there a need to capture
provenance data, such as, who created the property
or what other properties or processes it was derived
from? Should it be possible to change the value of
this property, and in this case, should some record
of state changes be maintained?

Bonduel [34] provides a visual presentation,
thereby comparing different modelling approaches
for property assignment. Figure 1 compares the if-
cOWL and SimpleBIM approach to describing that
some slab is load bearing. SimpleBIM uses the
most straightforward approach by simply describ-
ing properties defined as OWL Data Properties [19,
§5.4] with a literal value assigned. ifcOWL is no-
ticeably more complex since (1) the property is as-
signed through a property set which is assigned
through a relational node, (2) the property is not
directly assigned to the property set but requires

4

http://www.buildingsmart-tech.org/ifcOWL/IFC4#

rdf:type

simpleBIM:isLoadBearing

inst:ifcSlab_37864

ifcowl:IfcSlab

true

SimpleBIM

ifcOWL

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

ifcowl:relatedObjects_IfcRelDefines

ifcowl:relatingPropertyDefinition_
IfcRelDefinesByProperties

ifcowl:hasProperties_
IfcPropertySet

ifcowl:name_IfcProperty

ifcowl:nominalValue_
IfcPropertySingleValue

express:hasString

express:hasBoolean

inst:IfcSlab_37864

ifcowl:IfcSlab
inst:IfcRelDefinesByProperties_37867

ifcowl:IfcRelDefinesByProperties

inst:IfcPropertySet_37866

ifcowl:IfcPropertySet

inst:IfcPropertySingleValue_4645

ifcowl:IfcPropertySingleValue

inst:IfcIdentifier_43912

ifcowl:IfcIdentifier

inst:BOOLEAN_39949

express:BOOLEAN

LoadBearing

true

Class Instance Literal

Figure 1: Visual complexity comparison of representing property assignment using ifcOWL and simpleBIM.4

an intermediate node which refers to two different
nodes holding the name and the value of the prop-
erty, and (3) the literal is described using an EX-
PRESS datatype.

Listing 1 shows how SimpleBIM properties en-
coded in the Turtle [35] serialisation format for
RDF data models. In RDF, all statements are de-
scribed in triples consisting of a subject, a predi-
cate and an object. The first triple in the list-
ing describes the subject inst:ifcSlab_37864 which by
the predicate rdf:type (often abbreviated ’a’) is as-
serted to be an instance of the class (the object)
ifcowl:IfcSlab. A period ’.’ marks the end of a triple.
Semicolon ’;’ also marks the end of a triple, and
further denotes that subject is not repeated in the
subsequent triples. A comma ’,’ denotes that both
the subject and predicate are not repeated in the
next triples. All IRIs are prefixed but the names-
paces associated with the prefixes are not shown in
the listings. In this article, inst: is a generic prefix
used to describe instances and all other prefixes re-
late to ontologies that are either described in this
section or discoverable at http://prefix.cc/{prefix}.
The object of the second triple is a literal value

and the IRI after ’ˆˆ’ specifies the datatype of the
literal. In this case a boolean as described by the
ontology version of the XSD schema.

Listing 1: Property assignment in Turtle syntax.

SimpleBIM
inst:ifcSlab_37864 rdf:type ifcowl:IfcSlab ;

simpleBIM:isLoadBearing "true"^^xsd:boolean .

Examining the different approaches for property
assignment reveals a high variance in complex-
ity. The most simplistic form, direct assignment
of datatype properties, reduces the complexity of
the queries and thereby makes it easier to navi-
gate the graph. Typed literals can encode infor-
mation such as the unit of measure as proposed by
Lefrançois and Zimmermann [36] with the Unified
Code of Units of Measures datatype. However, no
additional metadata can be included.

Rasmussen et al. [16] describes three levels of
complexity, where each level refers to the number of
steps between the FoI and the actual object (literal

4Visualization obtained using SPARQL visualizer https:
//github.com/MadsHolten/sparql-visualizer

5

http://prefix.cc/rdf
https://github.com/MadsHolten/sparql-visualizer
https://github.com/MadsHolten/sparql-visualizer

or individual) that encodes the value of its property.
L1 is equal to the approach used by SimpleBIM.
L2 (used by IFCWoD and BIMDO) describes the
property as an object, and thereby allows attaching
metadata such as a unit of measure using a dedi-
cated ontology like Quantities, Units, Dimensions
and Types (QUDT) [37] or provenance data using
the PROV Ontology (PROV-O) [38]. L3 is used by
OPM and is inspired by the Smart Energy-Aware
Systems (SEAS) evaluations [39], which is aligned
with the joint W3C and OGC SOSA/SSN standard
specifying the semantics of sensors, observations,
sampling, and actuation [40, 41, 42]. By assigning
multiple property states to one property, L3 prop-
erty assignment allows the property value to change
over time while keeping a record of how it evolved.
The property assignment complexity in ifcOWL ex-
ceeds L3 by magnitudes but does not add function-
ality other than backward compatibility with IFC.

2.3. Handling Interdependent Properties

Isaac et al. [43] suggest handling the complexity
of construction projects by modelling the projects’
topology in graphs. Other recent research projects
have further illustrated how relationships in build-
ing data beyond the geometrical ones can be han-
dled by the use of semantic web technologies. This
further introduces the capability of using reasoning
engines to infer implicit information that is not di-
rectly asserted in the AEC-KG, but that can be de-
duced from the facts that are present, thereby mak-
ing them explicit facts. This technology is heavily
used to make machines capable of ‘reading between
the lines’ to provide enhanced results from search
engines and so forth.

Deducing implicit facts from prose text using de-
scription logic is not remarkably different from the
work of an engineer who puts various inputs into
equations in order to generate new outputs. This
is also in accordance with the analogy by Winch
[5] which compares construction project teams to
information processing systems. The problem is
that the information processing systems are today
constituted by the knowledge workers and the soft-
ware tools they use. This challenge was studied by
Pauwels et al. [44] who considers the use of rule-
checking environments to formalise the knowledge
of the human workers. In particular, semantic web
technologies are used, to establish an AEC-KG con-
sisting of (1) explicit building information parsed
from an IFC file, (2) an ontology parsed from the
IFC schema, and (3) a set of rule-sets describing

implicit engineering knowledge. The concrete case
of performing compliance checking of acoustic per-
formance is presented with this work as a proof of
concept. This novel approach demonstrates how a
typical task for a knowledge worker can be explicitly
described in reuseable rule-sets, and thereby it rep-
resents an entirely different data-driven approach
to a labour-intensive job. A more recent study by
Zhang et al. [28] uses a similar approach with the
purpose of (1) providing shortcuts to make an if-
cOWL graph easier to query and (2) deduce geo-
metric information from 3D geometry. The baseline
of both studies is a final BIM model, and thereby
it differs from the situation investigated with this
work.

Both Pauwels et al. [44] and Zhang et al. [28]
use rules to infer results at run-time. Providing
derived properties at run-time rather than materi-
alising them in the graph has the benefit that out-
dated or redundant information is avoided. Zama-
nian and Pittman [45], however, argues that since
AEC projects are performed by distributed teams,
it is often desirable to have some consistent redun-
dancies that are designed and managed to provide
more efficient means to access and manipulate the
information. Some party might wish to refer to an
intermediate result of a derived property, and this is
not immediately possible if that information is only
described in a rule. Also, with OPM, the inten-
tion is that interdependencies are explicitly stated
so that the knowledge workers are provided with
insights. The initial work presented by Rasmussen
et al. [16] suggests that every state of a property
is saved in order to evaluate design changes, and
this is only possible when materialising reasoning
results.

3. An Ontology for Property Management
(OPM)

The Ontology for Property Management (OPM)
was initially introduced by Rasmussen et al. [16]. It
provides terminology for modelling complex prop-
erties in a design environment. Complexity, in
this regard, entails that they (1) change over time
(2) can be assumptions and hence comprise vary-
ing reliability, and (3) can be dependent on the
value of other properties. The first contribution
demonstrated how property assignment modelled
according to this ontology can be used to answer
a set of competency questions that are all con-
cerned with managing evolving properties. Sec-

6

<prop> <state1>

props:heatingDemand
rdf:typerdf:type

prov:generatedAtTime

rdf:type

schema:value

opm:hasPropertyState

“500 W”

seas:Evaluation
prov:Entity, opm:PropertyState

opm:CurrentPropertyState
opm:Property

“2018-03-22T12:00:00Z”^^xsd:dateTime

<foi>

Figure 2: L3 property assignment using an opm:PropertyState for assigning the latest
value and metadata describing when it was created [16].

tion 3.1 first overviews the concepts of the OPM
ontology that was presented in the initial OPM pa-
per. Then subsequent sections define additional
sets of competency questions that deal with relia-
bility (Section 3.2) and handling of interdependen-
cies between properties (Section 3.3). We propose
a set of new concepts extending the initial version
of OPM to provide terminology to answer these
questions. Like the original OPM ontology, the ex-
tensions depend on concepts from the SEAS [39],
schema.org and PROV-O ontologies and align well
with the BOT, PROPS and PRODUCT ontologies
of the W3C LBD Community Group. OPM uses
the namespace https://w3id.org/opm## and the docu-
mentation is provided when this IRI is visited in
a web browser.

3.1. Property History

Rasmussen et al. [16] described seven competency
questions, all dealing with property history mod-
elling are listed below.

CQ 1.1 How to semantically describe a property
such that its value is changeable while its his-
torical record is maintained?

CQ 1.2 How to revise a property value?

CQ 1.3 How to delete a property while still being
able to retrieve the history of it and not break
all the links to derived properties that depend
on it?

CQ 1.4 How to restore a deleted property?

CQ 1.5 How to retrieve the full history of how the
value of a property has evolved over time?

CQ 1.6 How to retrieve only the latest value of a
property?

CQ 1.7 How to simplify a complex OPM property
(using states) for easier and faster querying?

To answer these questions, the authors describe
three different levels of property assignment with
varying expressivity. The level in this regard refers
to “the number of steps/relations between the FoI
and the actual object (literal or individual) that en-
codes the value of its property.” The most expres-
sive level, L3, is used in OPM to capture property
changes over time. It uses the concept of property
evaluations from SEAS. Figure 2 illustrates how the
opm:PropertyState (subclass of seas:Evaluation) can
be used to capture a state of a property. It is as-
signed to a property using the opm:hasPropertyState
(sub-property of seas:evaluation) predicate, and
the rdfs:range of this predicate implies that it
belongs to the opm:PropertyState class. OPM
depends on schema:value, schema:minValue and
schema:maxValue to assign a value to a property
state, and, as a minimum, the state must further
have a prov:generatedAtTime predicate. Retrieving
the most recent state of a property can be achieved
by querying for the highest prov:generatedAtTime
value, but this (1) increases the query com-
plexity and (2) reduces query performance [16].
Therefore, the opm:CurrentPropertyState class is al-
ways assigned to the most recent state and re-
moved from the previous state when performing
SPARQL [29] update queries on the AEC-KG. The
opm:OutdatedPropertyState class can, in this case,
be assigned to the outdated property state.

A different design pattern which is also supported
by OPM is property assignment by classification. In
this case, a generic property such as props:hasProperty

is used as predicate and the object (the property)
is classified according to the type of property. For
example: <foi> props:hasProperty <prop> . <prop> rdf:type

props:NominalUA .

As illustrated in Figure 3, changing a property’s
value is handled by assigning a new property state
holding the new value and other metadata such as
provenance. Thereby, it is possible to retrieve the

7

https://w3id.org/opm#PropertyState
https://w3id.org/opm
https://w3id.org/opm#PropertyState
https://w3id.org/seas/Evaluation
https://w3id.org/opm#hasPropertyState
https://w3id.org/seas/evaluation
http://www.w3.org/2000/01/rdf-schema#range
https://w3id.org/opm#PropertyState
http://schema.org/value
http://schema.org/minValue
http://schema.org/maxValue
https://www.w3.org/TR/prov-o/#generatedAtTime
https://www.w3.org/TR/prov-o/#generatedAtTime
https://w3id.org/opm#CurrentPropertyState
https://w3id.org/opm#OutdatedPropertyState

<prop>

“2018-03-23T13:00:00Z”^^xsd:dateTime

<state2>
rdf:typerdf:type

prov:generatedAtTimeprov:generatedAtTime

rdf:type
rdf:type

rdf:type
schema:valueschema:value

opm:hasPropertyStateopm:hasPropertyState

seas:Evaluation
prov:Entity, opm:PropertyState

seas:Evaluation
prov:Entity, opm:PropertyState

opm:CurrentPropertyStateopm:CurrentPropertyState

opm:OutdatedPropertyState “2018-03-22T12:00:00Z”^^xsd:dateTime

<state1>

“500 W”^^cdt:power “520 W”^^cdt:power

Figure 3: Changing a property is handled by assigning a new property state to
the property and removing the opm:CurrentPropertyState from the state that was
previously defined as the current property state. Assigning the previous state as
opm:OutdatedPropertyState is optional [16].

full history of a property and restore previous prop-
erties if necessary. Changing and restoring proper-
ties can be handled with standardised SPARQL up-
date queries that are executed against the AEC-KG
by client applications.

In order to maintain the history of the project
evolution and to be able to revert to an earlier stage,
data should never be removed from the AEC-KG.
Marking a deleted property state as an instance
of both opm:CurrentPropertyState and opm:Deleted
provides filtering options, and thereby the state can
be stored while hidden from end users. A deletion
is reverted by inferring a new state that inherits
the properties of the most recent state with a value
assigned to it. Having both the initial state, the
deleted state and the restored state available al-
lows for tracking when and by whom the different
changes were conducted.

3.2. Property Reliability

The AEC industry is a complex industry where
each project is constantly changing during the de-
sign and planning stages. As part of this work, we
had discussions with industry professionals who de-
scribed working methodologies that are dependent
on being able to assess the quality of any data in
the project. As a result, we defined the following
set of additional competency questions for property
reliability:

CQ 2.1 How to describe that the value of some
property is defined temporarily until the actual
value is known?

CQ 2.2 How to document that some property has
been confirmed and can hence be trusted not
to change in the future?

CQ 2.3 How to describe that some property is de-
rived from, and hence dependent on the value
of some other property?

CQ 2.4 How to describe a property requirement?

All these questions require terminology that was
not initially part of OPM, but in the following, each
question will be answered by adding a specific class
to the ontology.

CQ 2.1, How to describe that the value of some
property is defined temporarily until the actual value
is known?. OWL class opm:Assumed
In the early stages of any construction project, it
is common practice to make temporary assump-
tions in order to progress with the design. Assump-
tions are typically managed in assumption lists,
conducted as simple documents such as a spread-
sheet, and it is the project manager’s job to make
sure that all assumptions are later clarified and con-
firmed by a person in charge of the specific domain.
An assumption is thus defined here as a non final
value with a high probability of changing over time
as the project evolves. Classifying a property state
as opm:Assumed describes that the value is tempo-
rary and must later be confirmed. A querying for
all the states that belong to this class reveals which
properties are yet to be confirmed.

CQ 2.2, How to document that some property has
been confirmed and can hence be trusted not to
change in the future?. OWL class opm:Confirmed
A confirmed value is approved by a person who has
the authorisation to do so. Classifying a property
state as opm:Confirmed indicates that its value can
be trusted not to change in the future. For legal
documentation purposes, a digital signature can be

8

https://w3id.org/opm#CurrentPropertyState
https://w3id.org/opm#OutdatedPropertyState
https://w3id.org/opm#CurrentPropertyState
https://w3id.org/opm#Deleted
https://w3id.org/opm#Assumed
https://w3id.org/opm#Assumed
https://w3id.org/opm#Confirmed
https://w3id.org/opm#Confirmed

assigned to the property. Also, a link to documen-
tation such as a mail, a scanned contract or sim-
ilar can be attributed to the property state using
the opm:documentation predicate. As it is common
practice to set milestones in the course of a con-
struction project, at which certain parameters are
locked, these are obvious opportunities to mark all
related object properties as confirmed. An exam-
ple of a milestone is the date where the layout of
the superstructure is frozen and concrete elements
are ordered from the manufacturer. Changing the
design after this date is possible, but it will likely
lead to a cost penalty that someone needs to pay.

CQ 2.3, How to describe that some property is de-
rived from, and hence dependent on the value of
some other property?. OWL Class opm:Derived
Engineering is chiefly a discipline of gathering infor-
mation, processing that information, typically by
applying math and physics, and thereby deducing
new information. A simple example is the area of
a window, which is either directly deduced from its
geometrical definition or by a product of the height
and width properties. If the value of a property is
dependent on other properties, it should have the
opm:Derived class applied. Keeping derived prop-
erties up to date can be automated, but in many
occasions it is desirable for the engineer to keep
the design as is, knowing that the property is no
longer valid. Only when the consequence of the
change is significant, the design is revised. It might
also be that the consequences are not acceptable,
and in this case, the party who made the initial
change must instead be asked to revert the change.
The engineer can be supported in this decision by
dynamically deriving the new result while calculat-
ing the deviation from the static result. Also, it
can be explicitly stated that the state belongs to
the class opm:OutdatedPropertyState. Next section
deals specifically with the handling of derived prop-
erties.

CQ 2.4, How to describe a property requirement?.
OWL class opm:Required
Requirements can be assigned to abstract product
or space models holding the prerequisites for a de-
sign. Use cases for this include space schemas hold-
ing functional requirements of the spaces of a fu-
ture building, design models holding functional re-
quirements for mechanical equipment, and so forth.
Rasmussen et al. [46] implements this feature to
compare client requirements to a building with the

actual design. It is thereby possible to query the
AEC-KG for all properties that do not fulfil the
requirements that have been defined. OPM allows
both requirements and design values to change over
time, and therefore, the consequence of a violated
requirement must ultimately be that either the re-
quirement itself or the violating design value needs
to adapt.

3.3. Property Interdependence

The opm:Derived class enables to describe that
some property is derived from one or more other
properties. There are, however, more things to
consider when dealing with interdependent proper-
ties such as traceability and quality assurance. We
defined the following set of additional competency
questions to capture these:

CQ 3.1 How to associate a derived property to the
properties from which it was derived?

CQ 3.2 How to identify that a derived property is
outdated?

CQ 3.3 How to formally describe a calculation
that can be applied to infer derived properties?

CQ 3.4 How to associate a derived property to the
calculation or algorithm that formalises how it
was derived?

CQ 3.5 How to check for circular dependencies in
derived properties?

CQ 3.6 How to define the reliability of a derived
property?

CQ 3.7 How to check which derived properties
will be affected if a specific property is
changed?

OPM does not restrict how derived properties are
inferred and whether this is accomplished with run-
time inference or by materialising the derived prop-
erties in the graph. It does, however, define a best
practice approach for modelling interdependencies
in a way that satisfies the answering of above com-
petency questions. A derived property is modelled
like any other OPM property, but it is classified
as opm:Derived and its value is inferred instead of
being typed.

9

https://w3id.org/opm#documentation
https://w3id.org/opm#Derived
https://w3id.org/opm#Derived
https://w3id.org/opm#OutdatedPropertyState
https://w3id.org/opm#Required
https://w3id.org/opm#Derived
https://w3id.org/opm#Derived

<p3state1>

<space>

<p1> <p3> <p2>
opm:hasPropertyState opm:hasPropertyState

prov:generatedAtTime

prov:generatedAtTime

prov:generatedAtTime

props:infiltrationHeatLoss

rdf:type rdf:type
schema:value schema:value

schema:value

“800 W”^^cdt:power “440 W”^^cdt:power

“1240 W”^^cdt:power

opm:CurrentPropertyState

opm:CurrentPropertyState
opm:Derived

opm:CurrentPropertyState

“2018-03-23T13:00:00Z”^^xsd:dateTime “2018-03-23T13:00:00Z”^^xsd:dateTime

“2018-04-11T12:00:00Z”^^xsd:dateTime

props:transmissionHeatLoss

props:heatingDemand

opm:hasPropertyState

rdf:type

<p1state1> <p2state1>
prov:wasDerivedFrom prov:wasDerivedFrom

Figure 4: When inferring derived properties, they should be connected to the property states
from which they are derived using a prov:wasDerivedFrom predicate.

CQ 3.1, How to associate a derived property to the
properties from which it was derived?.
In order to associate a derived property with the
properties from which it was derived each state of
the derived property must be linked to the states
of the properties from which it was derived (its ar-
guments). Figure 4 illustrates how this is achieved
using the prov:wasDerivedFrom predicate.

CQ 3.2, How to identify that a derived property is
outdated?.
The most recent state of a derived property is clas-
sified as opm:CurrentPropertyState. Since this state
is related to the states of the properties from which
it was derived using the prov:wasDerivedFrom pred-
icate it is possible to check whether these states are
also classified as opm:CurrentPropertyState. If this
is not the case, the derived property is outdated.

CQ 3.3, How to formally describe a calculation that
can be applied to infer derived properties?. OWL
class opm:Calculation
OPM includes the concept of calculations which
formalises the specification of the reasoning logic.
An instance of the opm:Calculation class holds
such specification. As a minimum, a calculation
must describe the IRI of the inferred property us-
ing predicate opm:inferredProperty, an expression
using predicate opm:expression and a path from
the FoI to each of the arguments using predicate
opm:argumentPaths. The latter is described as an
RDF list where each path is stated as a literal (See

example in Listing 2). Figure 5 shows the calcula-
tion that inferred the derived props:heatingDemand
property from Figure 4. The calculation de-
scribes the heating demand as the sum of the in-
filtration heat loss and the transmission heat loss
and since both these properties are directly as-
signed to the space itself, the calculation is rela-
tively simple. The opm:expression defines the re-
sult as the sum of the two variables ?htr and ?inf.
The paths from the space to the two arguments
are defined as "?foi props:transmissionHeatLoss ?htr" and
"?foi props:infiltrationHeatLoss ?inf". The number of
argument paths must correspond to the num-
ber of variables, but the paths can be extended
to restrict the results further. For example it
can be specified that the FoI must be an in-
stance of bot:Space by extending the first path to
"?foi a bot:Space ; props:transmissionHeatLoss ?htr". List-
ing 2 shows how Figure 5 is described using the
Turtle syntax for RDF.

Listing 2: Calculation from Figure 4 in Turtle
syntax.

inst:c1 rdf:type opm:Calculation .
inst:c1 opm:expression "?htr+?inf" .
inst:c1 opm:inferredProperty props:heatingDemand .
inst:c1 opm:argumentPaths (

"?foi props:transmissionHeatLoss ?htr"
"?foi props:infiltrationHeatLoss ?inf") .

The opm:expression is preferably defined in
SPARQL 1.1 syntax, which includes methods that
are sufficient for defining the simple calculations
that are extensively used in engineering. Since the

10

https://www.w3.org/TR/prov-o/#wasDerivedFrom
https://www.w3.org/TR/prov-o/#wasDerivedFrom
https://w3id.org/opm#CurrentPropertyState
https://www.w3.org/TR/prov-o/#wasDerivedFrom
https://w3id.org/opm#CurrentPropertyState
https://w3id.org/opm#Calculation
https://w3id.org/opm#Calculation
https://w3id.org/opm#inferredProperty
https://w3id.org/opm#expression
https://w3id.org/opm#argumentPaths
https://w3id.org/props#heatingDemand
https://w3id.org/opm#expression
https://w3id.org/bot#Space
https://w3id.org/opm#expression

<c1>

<p3state1>

opm:expression
opm:inferredProperty

prov:wasAttributedTo

props:heatingDemand

opm:Calculation

opm:argumentPaths

rdf:type
?htr+?inf

?foi
?htrprops:transmissionHeatLoss

?foi
?infprops:infiltrationHeatLoss

Figure 5: Describing a calculation with OPM. The
dimmed part in the upper left corner shows how states
inferred by the calculation can be attributed to the cal-
culation from which they were inferred. <p3state1>

refers to the inferred state illustrated in Figure 4.

expression is assigned as an OWL Data Property,
it is also possible to describe more complex expres-
sions. Expressions are expected to be encoded in
the SPARQL 1.1 syntax, but other languages such
as Javascript can be used as well. In this case, the
datatype of the expression should be the JavaScript
mediatype IRI iana:application/javascript5.

The algorithm in Figure 6 shows the intended
use of OPM calculations to generate reasoning re-
sults. The first step is to retrieve the calculation
data. If the expression is not defined using a special
datatype, it is expected to be described in SPARQL
syntax. In this case, the expression is analysed, and
if it contains an aggregation function such as sum,
min, max, avg or count, an aggregation sub-query
is constructed based on the single argument given
by the opm:argumentPaths property. If it does not
contain an aggregation function, the latest state of
each argument is retrieved, and the expression is
applied to the query using a BIND form, which al-
lows the assignment of a value to a variable6. The
naming of the variables used in the argument paths
must match the arguments used in the expression
(e.g. ?htr and ?inf in Listing 2). Listing 3 shows
some examples of SPARQL 1.1 expressions that can
be used in expressions. The result of the three first
expressions can be bound to a ?result variable using
a BIND form. The latter requires an aggregation sub-
query which can bind the result to a ?result variable.

If the expression is some JavaScript procedural
code, the arguments must first be retrieved using a

5https://www.iana.org/assignments/media-types/
application/javascript

6https://www.w3.org/TR/sparql11-query/#bind

query, and afterwards, the result can be calculated.
This is the only valid approach if more complex
calculations like simulations are needed.

Listing 3: Four example expressions for the
opm:expression datatype property.

Math expression
"math:sqrt(math:pow(?arg1, 2) + math:pow(?arg1, 2))"
String operation
"STRAFTER(?arg1,'/')"
Conditional expression
"IF(?arg1 > ?arg2, 'true', 'false')"
Aggregation expression
"SUM(?area)"

CQ 3.4, How to associate a derived property to the
calculation or algorithm that formalises how it was
derived?.
In order to associate a derived property with
the calculation from which it was derived,
a derived property should be linked to the
particular opm:Calculation instance using the
prov:wasAttributedTo predicate. This is illustrated
in Figure 5.

CQ 3.5, How to check for circular dependencies in
derived properties?.
Properties can be derived from properties which are
themselves derived, and so forth. Since all property
states are interlinked with the prov:wasDerivedFrom
predicate, it is possible to retrieve the full set of
property states from which a property is derived.
A property cannot be derived from itself, and in
order to check that no circular dependencies exist
in the graph, the query from Listing 4 can be used.
This query uses a SPARQL property path (OneOr-
MorePath, [29]) to ask for all arguments from which
a property state is derived, and a filter to only
return results where the state is dependent on itself.

Listing 4: Query to check for circular depen-
dency.

SELECT ?propSt
WHERE {

?propSt prov:wasDerivedFrom+ ?arg .
FILTER(?propSt = ?arg)

}

CQ 3.6, How to define the reliability of a derived
property?.
The reliability of a derived property should also
not be specified manually, but should instead be in-
ferred from the properties from which it is derived

11

https://www.iana.org/assignments/media-types/application/javascript
https://w3id.org/opm#argumentPaths
https://www.iana.org/assignments/media-types/application/javascript
https://www.iana.org/assignments/media-types/application/javascript
https://www.w3.org/TR/sparql11-query/#bind
https://w3id.org/opm#expression
https://w3id.org/opm#Calculation
https://www.w3.org/TR/prov-o/#wasAttributedTo
https://www.w3.org/TR/prov-o/#wasDerivedFrom

Figure 6: Algorithm to yield results from a opm:Calculation.

(the arguments). If one or more of these belong
to the class opm:Assumed, the same is the case for
the derived property. Likewise, if an argument is
of type opm:Deleted, the derived property is also
no longer valid (i.e. deleted). Inheritance of the
opm:Confirmed class to a derived property requires
all the arguments to be confirmed.

CQ 3.7, How to check which derived properties will
be affected if a specific property is changed?.
In a construction project, it is practically impossi-
ble to know the derived properties that other par-
ties might have created. With OPM, however, the
derived properties are related to the property from
which they are derived, and hence it is possible
to check what derived properties are affected when
changing a property.

4. Reasoning with the OPM Ontology

This section describes the use of two main compo-
nents of the semantic web in relation to OPM: rea-
soning (Section 4.1), and use of named graphs (Sec-
tion 4.2). It further describes the use of SPARQL
queries for inferencing (Section 4.3).

4.1. Materialising Derived Properties

Dealing with derived properties can be achieved
either by inferencing upon request (deduce results
at runtime) or by materialisation (saving the re-
sults) in the AEC-KG. Below, we justify why we
recommend the latter approach for OPM. Table 1
compares the two approaches qualitatively.

Table 1: Runtime vs. materialised inferencing.

Runtime Materialised

Validity H#
Performance #
Traceability #

Validity. When materialising the results of derived
properties, there will at some point exist data that
is no longer valid. Inferencing upon request will al-
ways provide the correct result based on the most
recent state of all arguments. It is, however, possi-
ble to check whether a derived property is outdated.
This check could be automated in order to infer
the opm:OutdatedPropertyState class to the prop-
erty states that are no longer valid using the logics
described in CQ 3.2.

Performance. As properties can be derived from
other derived properties, the dependency chain can
become long, and hence the reasoning engine needs
to loop over the data several times to saturate the
graph. The resulting performance drop can be a
significant drawback for inferencing upon request.
As complexity grows, performance in materialising
derived triples will also decrease, but this task can
be performed in the background, thereby not sacri-
ficing the user experience.

Traceability. Materialising every single state of
a derived property and the specific states of the
properties from which it was derived, provides
valuable insights. This increases transparency and
allows for more in-depth analyses of embedded
consequences of particular changes. It is easy to

12

https://w3id.org/opm#Calculation
https://w3id.org/opm#Assumed
https://w3id.org/opm#Deleted
https://w3id.org/opm#Confirmed
https://w3id.org/opm#OutdatedPropertyState

imagine that the management of interdependen-
cies will eventually become a chaotic task when
everything is dynamic and automatically updating
as the design changes. In a construction project,
it might for some reason be desired to stick to the
value as it is, knowing that the inputs have changed
slightly for some reason not known to the reasoner.
The missing traceability when having a calculation
performed at runtime furthermore entails some
legal implications concerning responsibility.

4.2. Separation of Explicit and Inferred Triples

To distinguish inferred triples from explicit
triples, they can be stored in separate named graphs
in the same database. Carroll et al. [47] describes
several purposes for named graphs. With this work,
we suggest that they are used here to separate ex-
plicit triples from derived triples. The triples that
are inferred from those in graph IRId are then
stored in a second named graph denoted IRId-I.
This provides a mechanism to remove all inferred
triples and re-establish them from the most recent
state of all arguments in cases where the history of
derived properties is not important.

4.3. Inferencing with SPARQL queries

Materialising derived properties based on calcu-
lation data can be achieved with SPARQL update
queries. Listing 5 shows a SPARQL update query
that will append derived properties based on the
calculation shown in Listing 2. The query appends
the derived property props:heatingDemand in the
graph of inferred triples <https://host/project−I> for
all FoIs that satisfy the argument paths specified
in Listing 2, but only if the property is not already
assigned. The query further adds the opm:Derived
and opm:Assumed classes to the newly generated
property state, and the generation time.

As a matter of fact, this query may be generated
automatically from the opm:Calculation instance of
Listing 2 using the algorithm shown in Figure 6.

Materialised derived properties may become out-
dated, as they depend on arguments that could
potentially change after materialisation. A simi-
lar query may be constructed to update derived
properties where one or more of the arguments have
changed.

These challenges may be addressed using incre-
mental reasoning [48], or defeasible reasoning ap-
proaches [49].

5. An API to interact with OPM Data

In the description of CQ 3.3 in Section 3.3 we
described the algorithm illustrated on Figure 6
for automatically generating reasoning results from
opm:Calculation instances. Listing 5 illustrates that
parametric SPARQL queries can be used to work
with OPM properties in general. This section in-
troduces an API to interact with OPM data using
parametric SPARQL queries.

Listing 5: SPARQL query to append a calcula-
tion.

1 PREFIX opm: <https://w3id.org/opm#>
2 PREFIX prov: <http://www.w3.org/ns/prov#>
3 PREFIX schema: <http://schema.org/>
4 PREFIX props: <https://w3id.org/props/>
5 INSERT {
6 # insert in the graph of inferred triples
7 GRAPH <https://host/project-I> {
8 ?foi props:heatingDemand ?propertyIRI .
9 ?propertyIRI opm:hasPropertyState ?stateIRI .

10 ?stateIRI a opm:CurrentPropertyState ,
11 opm:Derived , opm:Assumed ;
12 schema:value ?res ;
13 prov:generatedAtTime ?now ;
14 prov:wasDerivedFrom ?state1 , ?state2 .
15 }
16 }
17 # using both the explicit and the inferred triples
18 USING NAMED <https://host/project>
19 USING NAMED <https://host/project-I>
20 WHERE {
21 GRAPH ?g1 { # get argument 1
22 ?foi props:transmissionHeatLoss ?htr_ .
23 ?htr_ opm:hasPropertyState ?state1 .
24 ?state1 a opm:CurrentPropertyState, opm:Assumed ;
25 schema:value ?htr .
26 }
27 GRAPH ?g2 { # get argument 2
28 ?foi props:infiltrationHeatLoss ?inf_ .
29 ?inf_ opm:hasPropertyState ?state2 .
30 ?state2 a opm:CurrentPropertyState, opm:Assumed ;
31 schema:value ?inf .
32 }
33 # check that property state is not already inferred
34 MINUS {
35 GRAPH <https://host/project-I> {
36 ?foi ?inferredProperty ?prop
37 }
38 }
39 # perform calculation
40 BIND((?htr+?inf) AS ?res)
41 # create state and property IRIs
42 BIND(IRI(CONCAT("https://host/project/",
43 "states/", STRUUID())) AS ?stateIRI)
44 BIND(IRI(CONCAT("https://host/project/",
45 "properties/", STRUUID())) AS ?propertyIRI)
46 # get current time
47 BIND(now() AS ?now)
48 }

13

https://w3id.org/props#heatingDemand
https://w3id.org/opm#Derived
https://w3id.org/opm#Assumed
https://w3id.org/opm#Calculation
https://w3id.org/opm#Calculation

5.1. Interacting with Properties through Paramet-
ric Query Generation

The OPM Query Generator (OPM-QG)7 is a
JavaScript library for simplifying the task of writing
queries for doing Create, Read, Update and Delete
(CRUD) operations on an OPM-compliant AEC-
KG. This library eases the access to the concepts
introduced in Sections 3 and 4 for people not so
familiar with RDF. Further, it provides standard-
ised methods for creating the complex queries (List-
ing 5), thereby ensuring that no unintended opera-
tions are performed on the graph.

Since the API is built in JavaScript, queries can
be constructed and executed either directly from a
web client application or a NodeJS8-based server-
side application.

OPM-QG is divided into two interfaces, where
one deals with properties and the other one with
calculations: OPMProp and OPMCalc (See Fig-
ure 7, as well as Sections 5.2 and 5.3). Each inter-
face contains a set of methods that return SPARQL
queries (e.g. from Listing 2 to Listing 5).

OPMProp

OPMCalc

Create
postProp()
postClassProp()

Update
putProp()
restoreProp()

postCalcData()
postCalc()

getCalcData()
getOutdated()
getSubscribers()

Read
getProps()

Delete
setReliability()

putCalc()

Interfaces Methods

Figure 7: OPM-QG interfaces and methods.

OPM-QG supports the separation of explicit and
inferred triples in two named graphs as described in
Section 4.2, but can also construct queries that op-
erate only on the main graph. When instantiating
one of the two interfaces from Figure 7, it is defined
what host IRI is to be used. This information is
necessary when constructing IRIs for new resources.
The two BIND forms in the query illustrated in List-
ing 5 (lines 52-55) show how OPM-QG creates new
IRIs as a concatenation of {host}/{type}/{UUID} where
variable {type} is typically either state or property.

All read queries can be generated either as SELECT

or CONSTRUCT queries and create, update and delete
queries can be generated either as INSERT or CONSTRUCT

queries. The API can thereby be used for both run-
time inferencing and materialising derived triples.

7Query Generator - https://www.npmjs.com/package/
opm-qg

8https://nodejs.org/

The contained methods answer to most of the com-
petency questions described in Section 3.

In the following subsections, it is described how
OPM-QG can be used to generate parametric
queries for accessing and manipulating properties
and calculations respectively (Sections 5.2 and 5.3).

5.2. Properties

The OPMProp interface provides methods for
dealing with OPM properties. In the following, the
methods illustrated in Figure 7 are described in de-
tail.

Create. Properties can be assigned either as in-
stance properties or as property restrictions to an
owl:Class instance. The latter approach was used
by Rasmussen et al. [46] to specify space require-
ments at type level that would then be inherited
by all instances of that class. Listing 6 shows an
example where a property restriction is applied to
a project-specific wall class. The property restric-
tion is for the U-value (props:thermalTransmittance),
and it restricts its value to a specific property,
inst:heavyWall_r1_s1. This property is inherited by all
instances of the wall class and it can be changed us-
ing the general OPM principles, since the property
is described with an OPM property state.

Listing 6: OWL property restriction.

project-specific class with property restriction
inst:heavyWall rdfs:subClassOf prod:Wall ;

rdfs:subClassOf inst:heavyWall_r1 .
property restriction
inst:heavyWall_r1 rdf:type owl:Restriction ;

owl:onProperty props:thermalTransmittance ;
owl:hasValue inst:heavyWall_r1_s1 .

first state of property restriction
inst:heavyWall_r1_s1 rdf:type opm:CurrentPropertyState ,

opm:Required ;
schema:value "0.21 W/(m2.K)"^^cdt:ucum ;
prov:generatedAtTime "2018-10-31T.."^^xsd:dateTime .

OPM-QG includes two methods postProp() and
postClassProp() that generates queries for assign-
ing a new property and an associated property state
to some FoI. The methods take the IRI of the new
property and the value as arguments. For both
methods, the instance/class to which the property
should be assigned, can be specified by providing
the IRI of a specific FoI or by providing a triple
path that must return a match. The path is de-
scribed like the opm:argumentPaths from Listing 2.
Optionally, a reliability, a userIRI and a comment can
be provided.

Providing the object shown in Listing 7 to the
postProp() method returns the query shown in

14

https://www.npmjs.com/package/opm-qg
https://www.npmjs.com/package/opm-qg
http://www.w3.org/2002/07/owl#Class
https://w3id.org/props#thermalTransmittance
https://w3id.org/opm#argumentPaths

Listing 8. It is important to note that the path
is commented out. Either a foiIRI or a path must
be provided. Also, the last three attributes are op-
tional, and leaving them out would have omitted
lines 5, 7-8 and 20-21 from the query. Supplying a
path instead of the foiIRI would have omitted line 19
and replaced line 24 with the path. Since it is a cre-
ate method, it should only apply the new property
to the space if it does not already have the property
assigned.

Listing 7: Input object to postProp() or
postClassProp().

1 {
2 foiIRI: 'https://host/project/space_1',
3 //path: '?foi a bot:Space', //alternative
4 property: 'props:area',
5 value: '"20 m2"^^cdt:area',
6 comment: 'Just a test', //optional
7 userIRI: 'https://niras.dk/mhra', //optional
8 reliability: 'assumed' //optional
9 }

Read. The generic method, getProps(), can be
used to get all properties in the AEC-KG. The re-
sult can, however, also be restricted by providing
a specific foiIRI and/or a specific propertyType and/or
a specific propertyIRI. The results can also be re-
stricted to only include the latest property state or
property states with a specific restriction, such as
all deleted properties.

Listing 8: Result when providing Listing 7 to
postProp() (main graph).

1 CONSTRUCT {
2 ?foi props:area ?propertyIRI .
3 ?propertyIRI a opm:Property ;
4 opm:hasPropertyState ?stateIRI .
5 ?stateIRI a opm:Assumed .
6 ?stateIRI a opm:CurrentPropertyState ;
7 prov:wasAttributedTo ?userIRI ;
8 rdfs:comment ?comment ;
9 schema:value ?val ;

10 prov:generatedAtTime ?now .
11 }
12 WHERE {
13 # create state and property iris
14 BIND(IRI(CONCAT("https://host/project/",
15 "states/", STRUUID())) AS ?propertyIRI)
16 BIND(IRI(CONCAT("https://host/db/architect/",
17 "properties/", STRUUID())) AS ?propertyIRI)
18 BIND(now() AS ?now)
19 BIND(<https://host/project/space_1> AS ?foi)
20 BIND(<https://niras.dk/employees/mhra> AS ?userIRI)
21 BIND("Just a test" AS ?comment)
22 BIND("20 m2"^^cdt:area AS ?val)
23 # foi must exist
24 ?foi ?p ?o .
25 # the foi cannot have the property assigned already
26 MINUS { ?foi props:area ?prop . }
27 }

Update. The putProp() method for updating a
property by assigning a new state is comparable to
postProp(), but separate methods exist for setting
the reliability or restoring a specific property (as
described in [16]). Restoring a property (method
restoreProp()) or setting the reliability (method
setReliability()) requires the IRI of a specific
property (propertyIRI) as argument. The putProp()

method, however, accepts also a set of the IRI of a
specific FoI (foiIRI) and a propertyType or a path.

The query generated by the putProp() method
is comparable with the query in Listing 8. It con-
tains MINUS clauses so that it will only create a new
property if the previous state is not an instance of
opm:Confirmed, opm:Derived or opm:Deleted. The
first because a confirmed property should not
be changed, the second because a derived prop-
erty should be changed by the algorithm which
it was generated by and the latter because a
deleted property should first be restored using the
restoreProp() method which restores the previ-
ous state. If the existing value is equal to the new
one, it will also not be updated.

Delete. Creating a query to delete a property is
achieved by using the setReliability() method
to set the reliability to deleted. A helper method,
deleteProperty() also exists. This method only
takes the propertyIRI as an argument and preferably
a userIRI and a comment.

5.3. Calculations

The OPMCalc interface provides methods for
dealing with OPM calculations. Similar to OPM-
Prop, it contains methods to generate queries for
CRUD operations on the AEC-KG. When dealing
with calculations, however, there are both the man-
agement of opm:Calculation instances and the oper-
ations to be performed on the AEC-KG in order to
infer derived properties.

Create. The postCalcData() method returns a
query for creating a new opm:Calculation instance.
As a minimum, it takes a label, an expression, a set
of argumentPaths and the type of the inferred property
(inferredProperty) as arguments. The number of
variables used in the expression is compared to the
number of argumentPaths to ensure that the two match
and it is checked that the variable names match.
For the parametric queries to function, the name
used for the first variable in each argument path
is replaced by ?foi. This means that ?s props:area ?a

15

https://w3id.org/opm#Confirmed
https://w3id.org/opm#Derived
https://w3id.org/opm#Deleted
https://w3id.org/opm#Calculation
https://w3id.org/opm#Calculation

is automatically changed to ?foi props:area ?a. Op-
tional arguments include userIRI, a FoI restriction
(opm:foiRestriction) which will restrict the calcula-
tion to only be applied to a specific FoI and a path
restriction (opm:pathRestriction) which will restrict
the calculation only to be applied where a specific
path is matched. The generated query creates
a resource with the above properties assigned
(similar to Listing 2).

The postCalc() method takes all the arguments
that are available on an opm:Calculation instance
including the calculationIRI, and performs the same
validation of the arguments and generates a query
like the one illustrated in Listing 5. As described in
Section 3.3, lines 18-29 and 31-42 retrieve the argu-
ments. OPM-QG generates these according to the
number of arguments given in the calculation. Each
argument path is first appended with an underscore
suffix for the argument variable name. This is be-
cause the variable name is instead used to describe
the value of the most recent property state. The
state is itself saved in a variable, and all these are
appended in line 10 where it is specified what prop-
erty states the specific derived property state was
derived from.

If the expression contains an aggregation func-
tion, the structure of the calculation is quite differ-
ent. OPM-QG will recognise either of these and
instead generate a query like the one shown in
Listing 9. For aggregation functions, it is further
checked that the list of opm:argumentPaths only
contains one item.

The query in Listing 9 is a CONSTRUCT query, so it
will generate all the new derived properties and re-
turn the full graph without materialising it in the
AEC-KG. This enables the end user to evaluate the
results before making a final change and thereby
provides insights for the engineers to compare and
assess changes continuously without having every-
thing being updated automatically.

The sub-query in lines 19-25 assigns the FoI to
variable ?foi and all the latest states of the proper-
ties that match the path to variable ?state1. This
sub-query is needed in order to get the individual
states for assigning the prov:wasDerivedFrom predi-
cate to the derived property (line 10). The actual
sum is calculated in the next sub-query. This query
generates a result for each ?foi and creates IRIs for
the new derived properties while doing so. At line
55 the expression is applied. For this particular
query, it would be enough to just assign the value

of ?htr directly, but this approach allows for post-
processing such as formatting the result or adding
10 % (sum(?htr)*1.1). OPM-QG takes care of remov-
ing the sum() function from the expression since
?htr already holds the sum. The property will not
be assigned to FoIs already having the property as-
signed.

Listing 9: SUM query returned by postCalc().

1 CONSTRUCT {
2 ?foi ?inferredProperty ?propertyIRI .
3 ?propertyIRI a opm:Property ;
4 opm:hasPropertyState ?stateIRI .
5 ?stateIRI a opm:CurrentPropertyState ,
6 opm:Derived , ?reliability ;
7 schema:value ?res ;
8 prov:generatedAtTime ?now ;
9 prov:wasAttributedTo <https://host/project/c2> ;

10 prov:wasDerivedFrom ?state1 .
11 }
12 USING NAMED <https://host/project>
13 USING NAMED <https://host/project-I>
14 WHERE {
15 BIND(props:transmissionHeatTransferRate AS
16 ?inferredProperty)
17 # GET THE MOST RECENT STATES OF THE ARGUMENTS
18 GRAPH ?g {
19 { SELECT ?foi (?state AS ?state1) WHERE {
20 ?foi a ice:ThermalEnvironment ;
21 ^ice:surfaceInterior ?i .
22 ?i props:totalHeatTransferRate ?htr_ .
23 ?htr_ opm:hasPropertyState ?state .
24 ?state a opm:CurrentPropertyState
25 }}
26 # CALCULATE THE SUM
27 { SELECT ?foi (SUM(?res_) AS ?htr)
28 (IRI(CONCAT("https://host/project/",
29 "states/", STRUUID())) AS ?stateIRI)
30 (IRI(CONCAT("https://host/project/",
31 "properties/", STRUUID())) AS ?propertyIRI)
32 (now() AS ?now)
33 WHERE {
34 ?foi a ice:ThermalEnvironment ;
35 ^ice:surfaceInterior ?i .
36 ?i props:totalHeatTransferRate ?htr_ .
37 ?htr_ opm:hasPropertyState ?state1 .
38 ?state1 schema:value ?htr__ .
39 BIND(?htr__ AS ?res_)
40 } GROUP BY ?foi
41 }
42 # INHERIT CLASS OPM:ASSUMED OR OPM:DELETED
43 OPTIONAL {
44 ?state1 a ?reliability .
45 FILTER(?reliability = opm:Assumed ||
46 ?reliability = opm:Deleted)
47 }
48 }
49 # DO NOT APPEND IF PROPERTY ALREADY DEFINED
50 MINUS {
51 GRAPH <https://host/project-I> {
52 ?foi ?inferredProperty ?prop }
53 }
54 # APPLY EXPRESSION
55 BIND((?htr) AS ?res)
56 }

Read. Getting calculation data is achieved with the
getCalcData() method. If no arguments are pro-
vided, it will return a query to get all calculations.
Providing a calculationIRI will return the data for

16

https://w3id.org/opm#foiRestriction
https://w3id.org/opm#pathRestriction
https://w3id.org/opm#Calculation
https://w3id.org/opm#argumentPaths
https://www.w3.org/TR/prov-o/#wasDerivedFrom

that specific calculation. Providing a label will re-
turn the calculation matching that particular label.
Providing a foiIRI and a propertyType will return data
on the calculation which inferred the particular de-
rived property.
getOutdated() is a method for retrieving all de-

rived properties where one or more of the arguments
is no longer the opm:CurrentPropertyState. It can
be restricted to only return derived properties of a
specific FoI.
getSubscribers() returns a list of derived prop-

erties that are dependent on a specific property.
This can be used to evaluate whether other parties
will be influenced before a change to the property
is conducted. Instead of providing an IRI for the
property, it is also possible to provide a foiIRI and
the propertyType.

Getting the latest state or all the states of a par-
ticular derived property is not different from getting
a typed property. The OPMProp interface contains
methods for this purpose.

Update. Calculations do not use OPM for manag-
ing the specifications, and hence the calculations
themselves cannot be updated. It is, however pos-
sible to support this by simply assigning property
states to the expression, argument paths and so
forth (putCalc() method). This will, however, in-
crease complexity, since a derived property will not
only be outdated when one of its arguments has
changed, but also if the calculation which it was
attributed to has changed.

Similar to the postCalc() method, the
putCalc() method takes all the arguments
that are available on an opm:Calculation instance,
including the calculationIRI, and generates an update
query. The only difference is that this query will
apply new states to existing derived properties
where at least one argument has changed.

Delete. A derived property automatically inherits
the opm:Deleted state from any of its arguments and
thereby automatically becomes deleted itself.

6. Proof of Concept

In order to demonstrate the capabilities of the
OPM architecture, a Proof of Concept (PoC) appli-
cation was developed internally at the danish con-
sulting engineering company Niras. The applica-
tion performs the particular design task of calcu-
lating heating demand as described in the intro-
duction. It uses a generic approach; however, that

is transferable to other design tasks in the future.
An open-source web application9 with an accom-
panying OPM-REST backend10 was developed to
demonstrate most of the operations that the PoC
application performs on the AEC-KG.

6.1. System Architecture

Since the AEC-KG was stored in a triplestore
that exposes a SPARQL 1.1 endpoint [50], it
would have been possible for a client application to
perform queries directly through HTTP requests.
However, it was decided to make a middleware on a
backend server that handles communication with a
SPARQL 1.1 endpoint. The Stardog triplestore was
originally used, but any other triplestore that im-
plements the SPARQL 1.1 Protocol standard may
be used instead (e.g., Jena Fuseki, RDF4J Sesame).
No reasoning needs to be performed by the triple-
store. In fact, the queries generated by OPM-REST
API do contain complex constructs for OWL2 RL
axioms [51]. Therefore, the SPARQL engine does
operate all the OWL RL inferences, which has suf-
ficient expressivity for our needs.

Using the OPM-REST API, the frontend applica-
tion can be developed by developers with no knowl-
edge of RDF and OPM, and they are hence pro-
tected from the complex queries demonstrated in
the previous sections. This is particularly practical
for tasks that require several queries to the triple-
store and further entails that complicated requests
can be used across several client applications.

The backend is built as a Representational state
transfer (REST) API which exposes a set of routes
to which client applications can send HTTP request
in order to do CRUD operations on the AEC-KG
(see Section 5). Some of the routes are generic and
will, for example, return all properties assigned to
a FoI, change a class assigned to a FoI, update a
property or return a full list of calculations. Others
are provided for a particular application and will,
for example, return all the parts of the building
envelope that face a specific room.

The frontend of both applications is built with
the Angular11 and is structured so that a service
component takes care of the communication with
the backend whereas a set of controllers take care

9Demo: https://madsholten.github.io/OPM-REST/,
sources https://github.com/madsholten/OPM-REST/

10Installation instructions: https://github.com/
MadsHolten/OPM-REST/blob/master/readme.md

11https://angular.io/ JavaScript framework

17

https://w3id.org/opm#CurrentPropertyState
https://w3id.org/opm#Calculation
https://w3id.org/opm#Deleted
https://madsholten.github.io/OPM-REST/
https://madsholten.github.io/OPM-REST/
https://github.com/madsholten/OPM-REST/
https://github.com/MadsHolten/OPM-REST/blob/master/readme.md
https://github.com/MadsHolten/OPM-REST/blob/master/readme.md
https://angular.io/

proj:HeatedRoom

ice:ThermalEnvelope

ice:surfaceInterior

proj:Outdoors

bot:Zone

bot:Element

bot:Interface

ice:ThermalEnvelope
bot:Interface

proj:HeatedRoom

proj:WallTypeB

ice:representsElement
bot:interfaceOf

bot:interfaceOf

ice:representsElement
bot:interfaceOf

ice:surfaceExterior

bot:interfaceOf

bot:interfaceOf

ice:surfaceExteriorice:surfaceInterior
bot:interfaceOf

ice:ThermalEnvironment

bot:Zone
ice:ThermalEnvironment

bot:Zone
ice:ThermalEnvironment

props:designAmbientTemperature “-12 Cel”props:thermalTransmittance “0.25 W/(m2.K)”

props:designAmbientTemperature
props:airFlowrateInfiltration “0.13 l.m2/s”

“20 Cel”

props:designAmbientTemperature
props:airFlowrateInfiltration “0.13 l.m2/s”

“20 Cel”

Figure 8: Visualization of the AEC-KG model for heat loss calculation.

of building the view based on the data returned by
the service.

In the next sections, the functionalities of OPM-
REST related to OPM are described.

6.2. Interface to the Architect

Typical practice in engineering companies is that
a BIM model is received from the architect on
a weekly basis. The architectural model is then
mainly used as a geometrical reference model for
the mechanical and structural design models. With
this work, we suggest an approach where all the
valuable information is extracted for further use,
thereby relying on the set of ontologies and methods
proposed within the W3C LBD Community Group.
For example, using the Revit-BOT-exporter 12 [52]
with an extension for extracting the building enve-
lope and for communicating with the REST API
instead of writing triples to a file, it was possible to
establish direct communication between the native
BIM tool and the backend. All topological rela-
tionships and properties are extracted and sent via
an OPM batch upload route to the server through
this setup. A set of definitions for the graphical

12https://github.com/MadsHolten/revit-bot-exporter

programming tool Dynamo for Revit that directly
communicate with OPM-REST were further devel-
oped to demonstrate how a connection to legacy
models can be established. These are included in
the OPM-REST repository and it is our hope that
similar interfaces can in the future be created to
other BIM and simulation tools.

When receiving triples at the OPM batch upload
routes, all the zone and element instances and their
topological relationships are written to the AEC-
KG. The state of class instances and topological
relationships are not managed with OPM but prop-
erties such as space names and numbers, areas, vol-
umes, 2D space boundaries and object mesh models
are. All properties are received in complexity level
L1 (see Section 2.2), and these are loaded into a
temporary named graph in the AEC-KG (see Sec-
tion 4.2). Then, a comparison is conducted be-
tween what is already in the AEC-KG and what
new properties have been received. Finding the new
properties is handled by searching the temporary
graph for matches to the triple path ?foi ?prop ?val

while leaving out results in the project graph meet-
ing the triple pattern ?foi ?prop ?x. New properties
and states are created using the OPM-QG API dis-
cussed in Section 5, and the triples are added to

18

https://github.com/MadsHolten/revit-bot-exporter

the project graph. Next, the backend checks for
updated triples by finding the value of the latest
property state and comparing it to the new value.
Only if states are different, they are added to the
project graph in the form of new property states for
specific updated properties.

6.3. Appending Engineering Properties
With the initial graph in place, starting from

the architectural design model, the engineer then
defines and assigns a set of project-specific classes
for element and zone types with OWL property
restrictions similar to what was shown in Listing 6.
For heat loss calculations, most spaces are simply
seen as heated or unheated, and the exterior can
be either ground or air. The data model and the
inherited properties are illustrated in Figure 8. It
is based on BOT with Indoor Climate and Energy
(ICE) specific extensions and even more specific
project extensions. The two rooms are instances
of the project-specific proj:HeatedRoom (v
ice:ThermalEnvironment v bot:Zone) and inherit
a props:designAmbientTemperature of 20 °C as well
as an props:airFlowRateInfiltration of 0.13 l.m2/s.
The outdoor environment is an instance of the
project-specific proj:Outdoors class, thereby
inheriting a props:designAmbientTemperature of
−12 ° C. The wall is an instance of the project-
specific proj:WallTypeB class, thereby inheriting
a props:thermalTransmittance of 0.25 W/m2K.
Each ice:ThermalEnvelope (v bot:Element) has
a props:heatTransferSurfaceArea assigned explic-
itly, and each individual room also has an area.
Hence, all the necessary information for deriving
the heating demand is available, and a set of
opm:Calculations can be defined to do so.

Pre-defined calculations. Table 2 lists all the cal-
culations that were defined in the project, includ-
ing their opm:inferredProperty, opm:expression and
opm:argumentPaths. A quick examination of the
inferred properties and the argument paths reveals
that there are some internal interdependencies. As
long as there are no circular dependencies, it is not
a problem, and therefore a check needs to be per-
formed on the backend to assure that no circular
dependencies will be inferred by any new calcula-
tion before it is created.

Appending calculations. When sending a POST re-
quest to the IRI of a calculation, new derived prop-
erties are appended. The getCalcData() method

Table 2: Predefined opm:Calculations.

props:nominalUA

?u*?a ‘?foi props:heatTransferSurfaceArea ?a’,
‘?foi ice:representsElement ?el .

?el props:thermalTransmittance ?u’

props:designTemperatureDifference

?te-?ti ‘?foi ice:surfaceInterior ?si .

?si props:designAmbientTemperature ?ti’,
‘?foi ice:surfaceExterior ?se .

?se props:designAmbientTemperature ?te’

props:totalHeatTransferRate

?ua*?dt ‘?foi props:designTemperatureDifference ?dt’,
‘?foi props:nominalUA ?u’

props:transmissionHeatTransferRate

sum(?htr) ‘?foi a ice:ThermalEnvironment ;

^ice:surfaceInterior ?int’,
‘?int props:totalHeatTransferRate ?htr’

props:infiltrationHeatTransferRate

?a*?inf*

1.166*1.0075

*(?ti-(-12))

‘?sp props:netFloorArea ?a’,
‘?sp props:designAmbientTemperature ?ti’,
‘?sp props:airFlowrateInfiltration ?inf’

props:heatingDemand

?tr+?inf ‘?foi props:transmissionHeatTransferRate ?tr’,
‘?foi props:infiltrationHeatTransferRate ?inf’

of the OPM-QG is used to get the calculation data
and subsequently, the postCalc() method is used
to infer the derived properties where the arguments
are matched but the derived property is not already
appended.

Each time a new BIM model is received from
the architect, there are potentially new matches
to the calculations, and, therefore, the newly de-
rived properties must be appended. Because of
the interdependencies between derived properties,
it might require several loops for all the derived
properties to be inferred, so some pre-processing is
done. The whole network of interdependencies is
explicitly stated in the graph, so it is possible first
to calculate an execution order. As a result, the
server load is reduced dramatically.

A dedicated route on the backend calculates the
full tree of all calculations using the algorithm il-
lustrated in the BPMN diagram in Figure 9. The
depth of a calculation denotes its position in the
dependency chain. A calculation having depth 0
has no dependencies and can hence be executed di-
rectly. Table 3 shows the depths of all the prop-
erties inferred by the calculations in Table 2. The
first three are independent on output from the other

19

https://w3id.org/bot#Zone
https://w3id.org/props#designAmbientTemperature
https://w3id.org/props#airFlowRateInfiltration
https://w3id.org/props#designAmbientTemperature
https://w3id.org/props#thermalTransmittance
https://w3id.org/bot#Element
https://w3id.org/props#heatTransferSurfaceArea
https://w3id.org/opm#Calculation
https://w3id.org/opm#inferredProperty
https://w3id.org/opm#expression
https://w3id.org/opm#argumentPaths
https://w3id.org/opm#Calculation

Figure 9: Algorithm to calculate complete execution tree for calculations.

calculations, but three other properties must first
be inferred by calculations in order to calculate the
props:heatingDemand. All calculations located at
the same depth can be executed in parallel.

Table 3: Calculation depths for calculations in Table 2.

Inferred property depth

props:infiltrationHeatTransferRate 0
props:designTemperatureDifference 0
props:nominalUA 0
props:totalHeatTransferRate 1
props:transmissionHeatTransferRate 2
props:heatingDemand 3

Updating calculations. When sending a PUT re-
quest to the IRI of a calculation, existing derived
properties are updated. The approach is similar
to appending calculations, but instead uses the
putCalc() method to update the derived proper-
ties where at least one of its arguments has changed.

The task of updating derived properties is not au-
tomated since the engineer must make the decision
of conducting a change. The engineer is, however,
provided with an overview of the outdated proper-
ties along with insights concerning the consequences
of conducting a particular change. Thereby, the en-
gineer is provided with supporting tools for decision
making.

In the user interface, an outdated derived prop-
erty is highlighted, and clicking an icon will re-
quest the backend for a full dependency tree of
the particular outdated property. The algorithm
is a bit different from what is illustrated in Fig-
ure 9 and it uses a recursive “follow your nose” ap-
proach for retrieving a full list of arguments. Fig-
ure 10 shows an example of a derived property
with a rather long dependency chain inferred by
the calculations shown in Table 2. The figure re-
veals that the props:heatingDemand is outdated be-

cause the props:heatTransferSurfaceArea of one of
the thermal envelope segments facing the partic-
ular space is no longer valid. This consequently
means that the props:nominalUA and hence also the
props:totalHeatTransferRate of that particular seg-
ment are outdated, which in turn means that the
props:transmissionHeatTransferRate of the space is
also outdated.

props:heatingDemand

props:infiltrationHeatTransferRate

props:transmissionHeatTransferRate

props:airFlowrateInfiltration

props:designAmbientTemperature

props:totalHeatTransferRate

props:totalHeatTransferRate

props:totalHeatTransferRate

props:totalHeatTransferRate

props:designTemperatureDifference

props:nominalUA

props:designAmbient
Temperature

props:thermal
Transmittance

props:heatTransfer
SurfaceArea

Figure 10: When the user clicks an outdated derived
property, the full calculation tree is shown to provide
insights.

Performing a PUT request on the derived
props:heatingDemand will not have any influ-
ence as long as the derived props:transmission-
HeatTransferRate has not been revised. Therefore,
updating the props:heatingDemand will require that
all the intermediate derived properties are also up-
dated starting with the one closest to the typed
property (props:heatTransferSurfaceArea). Since all
these properties belong to the engineer’s design, she
can decide to update the whole tree, which can be
achieved by sending a PUT request to the calcula-
tion IRI with a query parameter specifying that the
whole chain should be updated. If one or more
properties had belonged to another stakeholder, the
decision of updating the whole chain would require
involving this 3rd party.

20

https://w3id.org/props#heatingDemand
https://w3id.org/props#heatingDemand
https://w3id.org/props#heatTransferSurfaceArea
https://w3id.org/props#nominalUA
https://w3id.org/props#totalHeatTransferRate
https://w3id.org/props#transmissionHeatTransferRate
https://w3id.org/props#heatingDemand
https://w3id.org/props#transmission\protect \discretionary {\char \hyphenchar \font }{}{}HeatTransferRate
https://w3id.org/props#transmission\protect \discretionary {\char \hyphenchar \font }{}{}HeatTransferRate
https://w3id.org/props#heatingDemand
https://w3id.org/props#heatTransferSurfaceArea

Checking for outdated. It was previously de-
scribed how an outdated property is identi-
fied by checking if any of the arguments (or
arguments’ arguments) are no longer an in-
stance of opm:CurrentPropertyState. This can
be achieved with a SPARQL property path
and a MINUS clause: ?prop prov:wasDerivedFrom+ ?arg .

MINUS{?arg a opm:CurrentPropertyState}. This, however,
causes problems when depending on OWL restric-
tions for property inheritance. If a wall instance
is, for example, changed from proj:WallHeavy

to proj:WallLight, the inherited U-value will
change accordingly. The derived property for
props:nominalUA is dependent on the U-value,
but, since the latest state of this property is re-
lated to the most recent state of the U-value
of proj:WallHeavy (by prov:wasDerivedFrom), the
property path above will not recognise that the de-
rived property is no longer valid. Re-calculating
the result with a PUT request to the calculation
IRI will retrieve the new result, and comparing this
with the current result will reveal that the prop-
erty is outdated. The comparison approach is more
resource-intensive than the one that looks for states
that are not classified as opm:CurrentPropertyState.
This resource-intensive query can, however, be per-
formed on the server as a scheduled job, thereby
explicitly inferring the opm:OutdatedPropertyState
class. Also, it is possible to do this check each time
the class of an instance is changed.

6.4. Interface to Other Engineers

The props:heatingDemand of each space sets the
boundary conditions for the heater serving that
space. Generating heaters can be automated with
a SPARQL update query which searches for any
space classified as a HeatedSpace with a heating
demand above a certain threshold that does not al-
ready have a heater assigned. Calculations specific
to the flow system can then be set up by the HVAC
engineer similar to the procedure demonstrated for
the ICE engineer in Section 6.3.

7. Conclusions and Future Work

In this article we demonstrated how semantic web
technologies can be used to cope with the highly
interrelated and rapidly changing design decisions
when developing a construction project. We used
the preliminary Ontology for Property Manage-
ment (OPM) [16], and tripled the number of com-

petency questions it answers to account for prop-
erty reliablity, and the description of how Features
of Interest property values may be inter-dependent
by laws of physics. We proposed an API to homo-
geneously query and manage OPM-compliant AEC
Knowledge Graphs (AEC-KG). We demonstrated
how these contributions can be used with an open-
source and reusable Proof of Concept implementa-
tion. This implementation exposes the benefits of
having all interconnections between project proper-
ties explicitly connected in an AEC-KG. With such
traceability and consequence analysis of a property
change, we demonstrated that AEC softwares, even
proprietary softwares, could use semantic web tech-
nologies to better support the design engineers’ de-
cision inter-operating throughout the development
of construction projects.

We developed a reuseable open-source imple-
mentation which can be used to store design data
in a structured way, allowing interrelated data to
maintain their relations intact as the project pro-
gresses. This system answers our initial research
question:

How can we effectively store design data in
a structured way, allowing interrelated data
to maintain their relations intact as the
project progresses, without losing the history
of properties’ progression?

With our proof of concept implementation, the
full history of the project persists, and it is hence
possible at any point in time to analyse the back-
ground of a specific design change. It was endeav-
oured to use terminology which is already widely
adopted to describe the AEC-KG. Property in-
ferencing is based on standard OWL reasoning,
and the widely adopted ontologies PROV-O and
schema.org are used for describing properties.

The PoC shows an alternative approach for work-
ing with building data. It is a general experience
in the industry that valuable data is trapped in
proprietary BIM models and, with this work, we
demonstrate how data from the other stakeholder’s
(architect’s) model can be made accessible as RDF
triples, directly from within the designer’s tool-
chain and not through an intermediate file format.

7.1. With the Engineer Hat on

The presented infrastructure is fundamentally
different from how engineers currently work. The
intention is that calculations and inferencing, which

21

https://w3id.org/opm#CurrentPropertyState
https://w3id.org/props#nominalUA
https://www.w3.org/TR/prov-o/#wasDerivedFrom
https://w3id.org/opm#CurrentPropertyState
https://w3id.org/opm#OutdatedPropertyState
https://w3id.org/props#heatingDemand

are currently done in different tools by different peo-
ple, is described explicitly and in an interoperable
manner. As soon as all the arguments for a particu-
lar calculation are available, so is the result. In such
a setup, the primary task of an engineer is to make
sure that all arguments are provided by the other
practitioners. Further, since consequence analyses
can be performed much faster, the engineer could
potentially work with multiple parallel concepts for
each design until sufficient knowledge is available
for making a final choice.

Making calculations and hence design tasks
reusable entails that the knowledge of the company
as a whole grows over time in contrast to today
where it is mainly the knowledge of the employ-
ees that evolves. Over time, the growing AEC-KG
could potentially overcome the still existing chal-
lenge that companies lose access to large quantities
of critical knowledge as employees turn over as it
was implied by O'Leary [12].

7.2. Future Outlook

In the PoC, all calculations were performed at
the backend using an approach similar to the one
illustrated in Figure 6. It would be interesting to in-
vestigate how some calculations could be performed
by the client application while still following the
OPM principles described in Section 3 when writ-
ing the resulting triples to the AEC-KG. It would
also be interesting to investigate how more com-
plex calculations such as thermal simulations could
be implemented in practice.

Future work also includes proof of concept in-
tegration of the presented work in various propri-
etary softwares. In fact, designers usually rely on
such softwares to perform their work; for example,
structural designers use analysis and design soft-
ware when designing a multistory building. The
approach presented in this paper is a first step to-
wards the demonstration that Linked Data will fa-
cilitate the parallel development of various analysis
over the same building model in these different het-
erogeneous softwares.

Acknowledgements

Special thanks to the NIRAS ALECTIA Foun-
dation and Innovation Fund Denmark for funding.
Also thanks to Niras for allowing open distribution

of the developed artifacts13. It is a fundamental ne-
cessity for the future growth of the proposed stan-
dards that they are adopted and further developed
by the community.

References

1. McKinsey GI. Reinventing construction: A route
to higher productivity. 2017. URL: https:

//www.mckinsey.com/industries/capital-projects-
and-infrastructure/our-insights/reinventing-

construction-through-a-productivity-revolution;
accessed Nov. 2018.

2. Bertelsen S. Construction as a complex system. In:
Proceedings of the 11th Annual Conference of the In-
ternational Group for Lean Construction. 2003:143–
68. URL: http://www.iglc.net/papers/details/231;
accessed Sep. 2019.

3. Succar B. Building information modelling framework:
A research and delivery foundation for industry stake-
holders. Automation in Construction 2009;18(3):357–
75. doi:10.1016/j.autcon.2008.10.003.

4. BSI . PAS 1192-3: 2014. Specification for infor-
mation management for the operational phase of as-
sets using Building Information Modelling. 2014.
URL: https://shop.bsigroup.com/Sandpit/PAS-old-
forms/PAS-1192-3/; accessed Dec. 2018.

5. Winch GM. Managing construction projects. John Wi-
ley & Sons; 2010. ISBN 978-1-405-18457-1.

6. Gallaher MP, O'Connor AC, John L. Dettbarn J, Gil-
day LT. Cost Analysis of Inadequate Interoperabil-
ity in the U.S. Capital Facilities Industry. Tech. Rep.;
National Institute of Standards and Technology; 2004.
doi:10.6028/nist.gcr.04-867.

7. Egbu C, Hayles C, Quintas P, Hutchinson V,
Anumba C, Ruikar K. Knowledge Management for
Sustainable Construction Competitiveness. Knowl-
edge Management for Sustainable Construction
Competitiveness Project, Partners in Innova-
tion (CI 39/3/709) Work Package 2004;URL:
http://www.knowledgemanagement.uk.net/resources/
kmfinal.pdf; accessed Sep. 2019.

8. Isikdag U, Aouad G, Underwood J, Wu S. Building
information models: a review on storage and exchange
mechanisms. In: Proceedings of the 24th CIB W78 Con-
ference. 2007:URL: http://itc.scix.net/data/works/
att/w78-2007-020-068b-Isikdag.pdf; accessed Dec.
2018.

9. Deshpande A, Azhar S, Amireddy S. A frame-
work for a BIM-based knowledge management system.
Procedia Engineering 2014;85:113–22. doi:10.1016/
j.proeng.2014.10.535.

10. Kiviniemi A. Requirements Management Interface to
Building Product Models. Ph.D. thesis; Stanford, CA,
USA; 2005. doi:10.25643/bauhaus-universitaet.242;
aAI3162341.

11. Tserng HP, Lin YC. Developing an activity-
based knowledge management system for contrac-
tors. Automation in Construction 2004;13(6):781–802.
doi:10.1016/j.autcon.2004.05.003.

13https://github.com/w3c-lbd-cg/opm

22

https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution
http://www.iglc.net/papers/details/231
http://dx.doi.org/10.1016/j.autcon.2008.10.003
https://shop.bsigroup.com/Sandpit/PAS-old-forms/PAS-1192-3/
https://shop.bsigroup.com/Sandpit/PAS-old-forms/PAS-1192-3/
http://dx.doi.org/10.6028/nist.gcr.04-867
http://www.knowledgemanagement.uk.net/resources/kmfinal.pdf
http://www.knowledgemanagement.uk.net/resources/kmfinal.pdf
http://itc.scix.net/data/works/att/w78-2007-020-068b-Isikdag.pdf
http://itc.scix.net/data/works/att/w78-2007-020-068b-Isikdag.pdf
http://dx.doi.org/10.1016/j.proeng.2014.10.535
http://dx.doi.org/10.1016/j.proeng.2014.10.535
http://dx.doi.org/10.25643/bauhaus-universitaet.242
http://dx.doi.org/10.1016/j.autcon.2004.05.003

12. O'Leary D. Enterprise knowledge management.
Computer 1998;31(3):54–61. URL: https://doi.org/
10.1109%2F2.660190. doi:10.1109/2.660190.

13. Santos R, Costa AA, Grilo A. Bibliometric analy-
sis and review of Building Information Modelling lit-
erature published between 2005 and 2015. Automa-
tion in Construction 2017;80:118–36. doi:10.1016/
j.autcon.2017.03.005.

14. Studer R, Benjamins V, Fensel D. Knowledge engi-
neering: Principles and methods. Data & Knowledge
Engineering 1998;25(1-2):161–97. doi:10.1016/s0169-
023x(97)00056-6.

15. Lóscio BF, Burle C, et al. NC. Data on the Web Best
Practices. W3C recommendation 2012;URL: https:

//www.w3.org/TR/2017/REC-dwbp-20170131/; accessed
Nov. 2018.

16. Rasmussen MH, Lefrançois M, Bonduel M, Hviid CA,
Karlshøj J. OPM: An ontology for describing prop-
erties that evolve over time. In: Poveda-Villalón M,
Pauwels P, Roxin A, eds. Proceedings of the 6th Linked
Data in Architecture and Construction Workshop;
vol. 2159 of CEUR Workshop Proceedings. CEUR-
WS.org; 2018:24–33. URL: http://ceur-ws.org/Vol-
2159/03paper.pdf; accessed Sep. 2018.

17. Curry E, O’Donnell J, Corry E, Hasan S, Keane M,
O’Riain S. Linking building data in the cloud: Inte-
grating cross-domain building data using linked data.
Advanced Engineering Informatics 2013;27(2):206–19.
doi:10.1016/j.aei.2012.10.003.

18. Pauwels P, McGlinn K, Törmä S, Beetz J. Linked data.
In: Borrmann A, Knig M, Koch C, Beetz J, eds. Build-
ing Information Modeling. Springer. ISBN 978-3-319-
92862-3; 2018:181–97. doi:10.1007/978-3-319-92862-
3.

19. W3C OWL Working Group . OWL 2 Web Ontology
Language Document Overview (Second Edition). W3C
recommendation 2012;URL: http://www.w3.org/TR/
2012/REC-owl2-overview-20121211/; accessed Nov.
2018.

20. Cyganiak R, Wood D, Lanthaler M. RDF 1.1
concepts and abstract syntax. W3C recommen-
dation 2014;URL: http://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/; accessed Nov. 2018.

21. ISO16739 . Industry foundation classes (ifc) for data
sharing in the construction and facility management
industries. Standard; International Organization for
Standardization; Geneva, CH; 2013. URL: https:

//www.iso.org/fr/standard/51622.html; accessed Sep.
2019.

22. Pauwels P, Terkaj W. EXPRESS to OWL for con-
struction industry: Towards a recommendable and us-
able ifcOWL ontology. Automation in Construction
2016;63:100–33. doi:10.1016/j.autcon.2015.12.003.

23. Beetz J, van Leeuwen J, de Vries B. IfcOWL: A
case of transforming EXPRESS schemas into ontologies.
Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing 2008;23(01):89. doi:10.1017/
s0890060409000122.

24. ISO10303-11 . Industrial automation systems and
integration – Product data representation and ex-
change – Part 11: Description methods: The EX-
PRESS language reference manual. Standard; In-
ternational Organization for Standardization; Geneva,
CH; 2004. URL: https://www.sis.se/api/document/
preview/905433/; accessed Sep. 2019.

25. Terkaj W, Pauwels P. A method to generate a mod-
ular ifcOWL ontology. In: Sanfilippo EM, Daniele
L, Colombo G, eds. Proceedings of the 8th Inter-
national Workshop on Formal Ontologies meet In-
dustry; vol. 2050 of CEUR Workshop Proceedings.
CEUR-WS.org; 2017:URL: http://ceur-ws.org/Vol-
2050/FOMI paper 3.pdf; accessed Sep. 2019.

26. Mendes de Farias T, Roxin A, Nicolle C. IfcWoD,
semantically adapting IFC model relations into OWL
properties. In: Proceedings of the 32nd CIB W78
Conference on Information Technology in Construc-
tion. 2015:URL: https://arxiv.org/abs/1511.03897;
accessed Mar. 2018.

27. Pauwels P, Roxin A. SimpleBIM : From full ifcOWL
graphs to simplified building graphs. In: Christodoulou
SE, Scherer R, eds. eWork and eBusiness in Architec-
ture, Engineering and Construction (ECPPM 2016).
Limassol, Cyprus: CRC Press. ISBN 9781138032804;
2016:11–8. doi:10.1201/9781315386904.

28. Zhang C, Beetz J, de Vries B. BimSPARQL: Domain-
specific functional SPARQL extensions for querying
RDF building data. Semantic Web 2018;9(6):829–55.
doi:10.3233/sw-180297.

29. Harris S, Seaborne A, Prudhommeaux E. SPARQL 1.1
query language. W3C recommendation 2013;21(10).
URL: https://www.w3.org/TR/sparql11-query/; ac-
cessed Dec. 2018.

30. Niknam M, Karshenas S. A shared ontology ap-
proach to semantic representation of BIM data. Au-
tomation in Construction 2017;80:22–36. doi:10.1016/
j.autcon.2017.03.013.

31. Berners-Lee T. Linked data. W3C recommen-
dation 2006;URL: https://www.w3.org/DesignIssues/
LinkedData.html; accessed Nov. 2018.

32. Holten Rasmussen M, Pauwels P, Lefrançois M, Fer-
dinand Schneider G. Building Topology Ontology.
W3C Draft Community Group Report; W3C; 2019.
URL: https://w3c-lbd-cg.github.io/bot/; accessed
Sep. 2019.

33. Rasmussen MH, Pauwels P, Hviid CA, Karlshøj J.
Proposing a central AEC ontology that allows for do-
main specific extensions. In: Bosché F, Brilakis I, Sacks
R, eds. Proceedings of the Joint Conference on Com-
puting in Construction; vol. 1. Heriot-Watt University.
ISBN 978-0-9565951-6-4; 2017:doi:10.24928/jc3-2017/
0153.

34. Bonduel M. Towards a PROPS ontology.
2018. URL: https://github.com/w3c-lbd-
cg/lbd/blob/gh-pages/presentations/props/

presentation LBDcall 20180312 final.pdf; accessed
Nov. 2018.

35. Prud’hommeaux E, Carothers G, Beckett D, Berners-
Lee T. RDF 1.1 Turtle - Terse RDF Triple Language.
W3C recommendation 2014;URL: http://www.w3.org/
TR/2014/REC-turtle-20140225/; accessed Nov. 2018.

36. Lefrançois M, Zimmermann A. The unified code for
units of measure in rdf: cdt:ucum and other ucum
datatypes. In: Gangemi A, Gentile AL, Nuzzolese
AG, Rudolph S, Maleshkova M, Paulheim H, Pan JZ,
Alam M, eds. The Semantic Web: ESWC 2018 Satel-
lite Events. Cham: Springer International Publishing.
ISBN 978-3-319-98192-5; 2018:196–201. doi:10.1007/
978-3-319-98192-5 37.

37. Hodgson R, Keller PJ. QUDT -quantities, units, dimen-
sions and data types in OWL and XML. 2011. URL:

23

https://doi.org/10.1109%2F2.660190
https://doi.org/10.1109%2F2.660190
http://dx.doi.org/10.1109/2.660190
http://dx.doi.org/10.1016/j.autcon.2017.03.005
http://dx.doi.org/10.1016/j.autcon.2017.03.005
http://dx.doi.org/10.1016/s0169-023x(97)00056-6
http://dx.doi.org/10.1016/s0169-023x(97)00056-6
https://www.w3.org/TR/2017/REC-dwbp-20170131/
https://www.w3.org/TR/2017/REC-dwbp-20170131/
http://ceur-ws.org/Vol-2159/03paper.pdf
http://ceur-ws.org/Vol-2159/03paper.pdf
http://dx.doi.org/10.1016/j.aei.2012.10.003
http://dx.doi.org/10.1007/978-3-319-92862-3
http://dx.doi.org/10.1007/978-3-319-92862-3
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.iso.org/fr/standard/51622.html
https://www.iso.org/fr/standard/51622.html
http://dx.doi.org/10.1016/j.autcon.2015.12.003
http://dx.doi.org/10.1017/s0890060409000122
http://dx.doi.org/10.1017/s0890060409000122
https://www.sis.se/api/document/preview/905433/
https://www.sis.se/api/document/preview/905433/
http://ceur-ws.org/Vol-2050/FOMI_paper_3.pdf
http://ceur-ws.org/Vol-2050/FOMI_paper_3.pdf
https://arxiv.org/abs/1511.03897
http://dx.doi.org/10.1201/9781315386904
http://dx.doi.org/10.3233/sw-180297
https://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1016/j.autcon.2017.03.013
http://dx.doi.org/10.1016/j.autcon.2017.03.013
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://w3c-lbd-cg.github.io/bot/
http://dx.doi.org/10.24928/jc3-2017/0153
http://dx.doi.org/10.24928/jc3-2017/0153
https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/presentation _LBDcall_20180312_final.pdf
https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/presentation _LBDcall_20180312_final.pdf
https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/presentation _LBDcall_20180312_final.pdf
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://dx.doi.org/10.1007/978-3-319-98192-5_37
http://dx.doi.org/10.1007/978-3-319-98192-5_37

http://www.qudt.org; accessed Dec. 2018.
38. Lebo T, Sahoo S, McGuinness D, Belhajjame K, Ch-

eney J, Corsar D, Garijo D, Soiland-Reyes S, Zed-
nik S, Zhao J. PROV-O: The PROV ontology.
W3C recommendation 2013;URL: https://www.w3.org/
TR/prov-o/; accessed Dec. 2018.

39. Lefrançois M. Planned ETSI SAREF Extensions
based on the W3C&OGC SOSA/SSN-compatible SEAS
Ontology Patterns. In: Fensel A, Daniele L,
eds. Proceedings of Workshop on Semantic Interop-
erability and Standardization in the IoT, SIS-IoT,;
vol. 2063 of CEUR Workshop Proceedings. CEUR-
WS.org; 2017:URL: http://ceur-ws.org/Vol-2063/
sisiot-paper2.pdf; accessed Dec. 2018.

40. Haller A, Janowicz K, Cox SJD, Le Phuoc D, Taylor
K, Lefrançois M. Semantic Sensor Network Ontology.
W3C Recommendation; World Wide Web Consortium;
2017. URL: https://www.w3.org/TR/vocab-ssn/; ac-
cessed Sep. 2019.

41. Haller A, Janowicz K, Cox S, Lefranois M, Taylor K,
Le Phuoc D, Lieberman J, Garca-Castro R, Atkinson
R, Stadler C. The modular SSN ontology: A joint W3C
and OGC standard specifying the semantics of sensors,
observations, sampling, and actuation. Semantic Web
2019;10:9–32. doi:10.3233/SW-180320.

42. Janowicz K, Haller A, Cox SJ, Le Phuoc D, Lefrançois
M. Sosa: A lightweight ontology for sensors, ob-
servations, samples, and actuators. Journal of
Web Semantics 2019;56:1–10. doi:doi.org/10.1016/
j.websem.2018.06.003.

43. Isaac S, Sadeghpour F, Navon R. Analyzing Build-
ing Information Using Graph Theory. In: Proceed-
ings of the 30th International Symposium on Automa-
tion and Robotics in Construction and Mining (IS-
ARC 2013): Building the Future in Automation and
Robotics. 2013:doi:10.22260/isarc2013/0111.

44. Pauwels P, Deursen DV, Verstraeten R, Roo JD, Meyer
RD, de Walle RV, Campenhout JV. A semantic rule
checking environment for building performance check-
ing. Automation in Construction 2011;20(5):506–18.
doi:10.1016/j.autcon.2010.11.017.

45. Zamanian M, Pittman JH. A software industry perspec-
tive on AEC information models for distributed collab-
oration. Automation in Construction 1999;8(3):237–48.
doi:10.1016/s0926-5805(98)00074-0.

46. Rasmussen MH, Bonduel M, Hviid CA, Karlshøj J.
Managing Space Requirements of New Buildings Us-
ing Linked Building Data Technologies. In: eWork
and eBusiness in Architecture, Engineering and Con-
struction (ECPPM 2018). CRC Press. ISBN 978-1-138-
58413-6; 2018:399–406.

47. Carroll JJ, Bizer C, Hayes P, Stickler P. Named
graphs, provenance and trust. In: Ellis A, Hagino T,
eds. Proceedings of the 14th international conference
on World Wide Web. ACM Press; 2005:doi:10.1145/
1060745.1060835.

48. Barbieri DF, Braga D, Ceri S, Valle ED, Grossniklaus
M. Incremental Reasoning on Streams and Rich
Background Knowledge. In: Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg; 2010:1–15.
doi:10.1007/978-3-642-13486-9 1.

49. Antoniou G, Bikakis A. DR-Prolog: A System for
Defeasible Reasoning with Rules and Ontologies on
the Semantic Web. IEEE Transactions on Knowledge
and Data Engineering 2007;19(2):233–45. doi:10.1109/

tkde.2007.29.
50. Ogbuji C. SPARQL 1.1 Protocol. W3C recommen-

dation 2013;URL: http://www.w3.org/TR/2013/REC-
sparql11-protocol-20130321/; accessed Nov. 2018.

51. Bischof S, Krötzsch M, Polleres A, Rudolph S. Schema-
agnostic query rewriting in sparql 1.1. In: Mika
P, Tudorache T, Bernstein A, Welty C, Knoblock C,
Vrandečić D, Groth P, Noy N, Janowicz K, Goble
C, eds. The Semantic Web – ISWC 2014. Cham:
Springer International Publishing. ISBN 978-3-319-
11964-9; 2014:584–600.

52. Rasmussen MH, Hviid CA, Karlshøj J. Web-based
topology queries on a bim model. In: Proceedings
of the 5th Linked Data in Architecture and Construc-
tion Workshop. 2017:URL: https://orbit.dtu.dk/ws/
files/140019661/Untitled.pdf; accessed Sep. 2019.

24

http://www.qudt.org
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/prov-o/
http://ceur-ws.org/Vol-2063/sisiot-paper2.pdf
http://ceur-ws.org/Vol-2063/sisiot-paper2.pdf
https://www.w3.org/TR/vocab-ssn/
http://dx.doi.org/10.3233/SW-180320
http://dx.doi.org/doi.org/10.1016/j.websem.2018.06.003
http://dx.doi.org/doi.org/10.1016/j.websem.2018.06.003
http://dx.doi.org/10.22260/isarc2013/0111
http://dx.doi.org/10.1016/j.autcon.2010.11.017
http://dx.doi.org/10.1016/s0926-5805(98)00074-0
http://dx.doi.org/10.1145/1060745.1060835
http://dx.doi.org/10.1145/1060745.1060835
http://dx.doi.org/10.1007/978-3-642-13486-9_1
http://dx.doi.org/10.1109/tkde.2007.29
http://dx.doi.org/10.1109/tkde.2007.29
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://orbit.dtu.dk/ws/files/140019661/Untitled.pdf
https://orbit.dtu.dk/ws/files/140019661/Untitled.pdf

	Introduction
	Document Exchanges at the Heart of AEC Project Design Workflows
	Shifting from the Exchange of Documents to the Management of AEC Knowledge Graphs
	Running Example: Calculation of Heating Demands for Spaces in a Building
	Overview of the Outline of the Article and the Main Contributions

	State of the Art
	Web Ontologies for AEC Knowledge Graphs
	Three Levels of Complexity for Design Property Descriptions
	Handling Interdependent Properties

	An Ontology for Property Management (OPM)
	Property History
	Property Reliability
	Property Interdependence

	Reasoning with the OPM Ontology
	Materialising Derived Properties
	Separation of Explicit and Inferred Triples
	Inferencing with SPARQL queries

	An API to interact with OPM Data
	Interacting with Properties through Parametric Query Generation
	Properties
	Calculations

	Proof of Concept
	System Architecture
	Interface to the Architect
	Appending Engineering Properties
	Interface to Other Engineers

	Conclusions and Future Work
	With the Engineer Hat on
	Future Outlook

