
OPM: An ontology
for describing properties that evolve over time

Mads Holten Rasmussen1,
Maxime Lefrançois2, Mathias Bonduel3, Christian Anker Hviid1, and Jan Karlshø1

1 Technical University of Denmark, Kgs. Lyngby, Denmark
mhoras@byg.dtu.dk

2 Univ Lyon, MINES Saint-Étienne, Laboratoire Hubert Curien UMR 5516, France
3 KU Leuven, Dept. of Civil Engineering, Technology Cluster Construction, Ghent, Belgium

Abstract. The W3C Linked Building Data on the Web community group
discusses different potential patterns to associate values to properties of building
elements. In this paper, we are interested in enabling a different value association
method for these and other properties, to account for changes in time, or to
annotate a value association with metadata such as provenance, reliability and
origin data. Existing ontologies in the Architecture, Engineering and Construc-
tion (AEC) industry are reviewed first and we motivate the use of the Smart
Energy-Aware Systems (SEAS) ontology as a starting point. Next, we list new
competency questions to represent the aforementioned metadata and develop
an extension of SEAS named the Ontology for Property Management (OPM).
We illustrate the use of OPM with different scenarios where a value association
needs to be annotated or updated in a dataset using SPARQL update queries.

1 Introduction

The W3C Linked Building Data on the Web Community Group (W3C LBD CG)1

brings together experts in the area of Building Information Modeling (BIM) and Web
of Data technologies to define existing and future use cases and requirements for Linked
Data based applications across the life cycle of buildings. Of particular interest to this
group (and possibly other domains) is the assignment of properties to any feature of
interest (FoI) - in this particular case, building-related elements.

Design is an iterative process, and this is, in particular, the case when designing a
building. The iterative nature entails that information which is valid at one point in time
might no longer be valid in the future, and keeping an overview of information validity
hence becomes a cumbersome task. When change management is furthermore handled
in a predominantly manual manner by tracking changes in meeting minutes, mail
correspondences or as a worst case, in the heads of the individual project participants
it constitutes a serious threat to the project execution [5].

Modeling design changes that occur over time is complex as one must define when some
FoI is the same as it was before, only with a changed property, and when it is a completely
new FoI. Is a particular door, for instance, the same after the width of it has changed?
Linked data provides us with the means to allow a concept defined by one party to be
extended by other parties, and this is a useful feature in construction projects where most
items have interfaces to several different parties from different domains. The door might
have a requirement for thermal capacity defined by one party, whereas another party has

2

defined the fire rating. In those cases, it will cause complications if a FoI is substituted
with a new one, and in this regard, it is preferred that the individual property is changed
instead. However, changing a property can also cause problems as there are many inter-
dependencies between properties of FoIs in a building. Changing a door width influences
the heat loss of the room if the thermal resistance of the door is different from its hosting
wall. To a certain degree the consequences might not be significant enough to revise
the heating system, but as changes add up it might be necessary. Tracking of property
evolution history allows designers to relate any derived property to the particular state
of the property on which it was derived. Hence, at any time it is possible to evaluate the
significance of the design changes and even assess consequences of a design change. In this
work, we suggest a modeling approach which allows properties of any FoI to change over
time while still keeping track on the history. The scope of the work is the core functional-
ity of OPM, so dealing with derived properties and classification of a property’s reliability
is not included, although it is covered by the current version of the OPM ontology 2.

2 Ontologies and Patterns to Model Properties

The following ontologies can be used to describe properties, value assignment for
properties, and provenance information. The Smart Energy-Aware Systems ontology
[7,8] consists of a set of modules together providing terminology to describe physical
systems and their interrelations. The core modules related to property management
are the seas:FeatureOfInterestOntology and the seas:EvaluationOntology. Together they
describe that some FoI can have a property assigned using the seas:hasProperty pred-
icate, and that different evaluations of a same property can be described using the
seas:Evaluation class. The Provenance Ontology [6] provides classes and properties to
describe provenance information such as when a prov:Entity was generated, by what
prov:Activity if was generated, and who was the prov:Agent that was associated with
that activity. The schema.org ontology is developed as a collaborative, community
activity, initiated by the major search engines [2]. It contains an updated version of the
GoodRelations ontology [4], one of the main ontologies regarding e-commerce, which
is now deprecated. schema.org allows to define quantitative property values by using
the schema:value, schema:minValue and schema:maxValue predicates, and qualitative
property values by using schema:additionalProperty. Both quantitative and qualitative
property values can be defined, respectively using the classes schema:QuantitativeValue
and schema:QualitativeValue for the property instance. From within the W3C LBD
CG, a need for a standardized approach towards building-related properties emerged
[1]. Future developments aim at proposing both standardized modeling patterns (e.g.
by using one or more levels of complexity as demonstrated in Section 2) and pre-
defined, but expendable, lists of building-related properties. The CDT Datatypes
in [9] leverage the Unified Code of Units of Measures UCUM to define a series of
RDF Datatypes to encode quantity values. The value and the unit are defined in the
same literal with a custom RDF datatype, for example e.g., "115 km.h-1"^^cdt:ucum, or
"0.27 W/(m2.K)"^^cdt:ucum.

Let <wall_A> be a FoI in a building model. At the moment of writing, three potential
Linked Data patterns were proposed to the W3D LBD CG [1], each having a different
degree of complexity: Level 1 (L1), Level 2 (L2) and Level 3 (L3). Each level number

https://w3id.org/seas/EvaluationOntology
https://w3id.org/seas/hasProperty
https://w3id.org/seas/Evaluation
https://www.w3.org/TR/prov-o/#Entity
https://www.w3.org/TR/prov-o/#Activity
https://www.w3.org/TR/prov-o/#Agent
http://schema.org/value
http://schema.org/minValue
http://schema.org/maxValue
http://schema.org/additionalProperty
http://schema.org/QuantitativeValue
http://schema.org/QualitativeValue
https://ci.mines-stetienne.fr/lindt/v2/custom_datatypes.html

3

refers to the number of steps/relations between the FoI and the actual object (literal or
individual) that encodes the value of its property. The following paragraphs illustrate
how these different levels can be used to model the thermal transmittance of wall
element <wall_A>, and its main material. Throughout the paper, we use namespace
prefixes as provided by the http://prefix.cc/ service.

Level 1: As illustrated in Listing 1, the FoI is directly linked to the UCUM literal that
encodes the quantity value of the thermal transmittance of the wall, using a OWL
Datatype property. It is also directly linked to the individual that represents material
concrete, using an OWL Object property.

Listing 1: Level 1 using a cdt:ucum literal.

ontology
ex:thermalTransmittance a owl:DatatypeProperty . ex:mainMaterial a owl:ObjectProperty .
data
<wall_A> ex:thermalTransmittance "0.27 W/(m2.K)"^^cdt:ucum ; ex:mainMaterial ex:concrete .

Level 2: This level explicitly identifies the thermal transmittance property of <wall_A>

with an intermediate instance of class seas:Property, following the approach defined
in the W3C and OGC Semantic Sensor Networks (SSN) ontology [3]. Using SSN, this
property instance may be the object of some observation or actuation activity. The
SEAS ontology reuses this pattern, but defines OWL Datatype property seas:simpleValue
and OWL Object property seas:value to directly link an instance of seas:Property to a
literal that encodes its value, or to an individual that encodes its value, respectively [7].

Listing 2: Level 2 using a cdt:ucum literal.

ontology
seas:thermalTransmittance a owl:ObjectProperty ; rdfs:subPropertyOf seas:hasProperty .
ex:mainMaterial a owl:ObjectProperty ; rdfs:subPropertyOf seas:hasProperty .
data
<wall_A> seas:thermalTransmittance <wall_A#prop> ; ex:mainMaterial <wall_A#mat> .
<wall_A#prop> seas:simpleValue "0.27 W/(m2.K)"^^cdt:ucum .
<wall_A#mat> seas:value ex:concrete .

Level 3: SEAS defines an additional level where the link between a property instance
and its value can be qualified. This is done using an intermediary object of class
seas:Evaluation. The instance of seas:Evaluation can be used to specify the validity
context for the value association (e.g. valid during a certain temporal interval), or
the type of evaluation (e.g. the maximal operating value). OWL Datatype property
seas:evaluatedSimpleValue and OWL Object property seas:evaluatedValue are then used
to link an instance of seas:Evaluation to a literal that encodes the evaluated value for
the property, or to an individual that encodes this value, respectively [7].

Listing 3: Level 3 using a cdt:ucum literal.

ontology
seas:thermalTransmittance a owl:ObjectProperty ; rdfs:subPropertyOf seas:hasProperty .
ex:mainMaterial a owl:ObjectProperty ; rdfs:subPropertyOf seas:hasProperty .
data
<wall_A> seas:thermalTransmittance <wall_A#prop> .
<wall_A#prop> seas:evaluation <wall_A#prop-eval1> .
<wall_A#prop-eval1> seas:evaluatedSimpleValue "0.27 W/(m2.K)"^^cdt:ucum.
<wall_A> ex:mainMaterial <wall_A#mat> .

http://prefix.cc/
https://w3id.org/seas/Property
https://w3id.org/seas/simpleValue
https://w3id.org/seas/value
https://w3id.org/seas/Property
https://w3id.org/seas/Evaluation
https://w3id.org/seas/Evaluation
https://w3id.org/seas/evaluatedSimpleValue
https://w3id.org/seas/evaluatedValue
https://w3id.org/seas/Evaluation

4

<wall_A#mat> seas:evaluation <wall_A#mat-eval1> .
<wall_A#mat-eval1> seas:evaluatedValue ex:concrete .

3 The proposed OPM ontology

This ontology answers a set of competency questions that were identified during in-
terviews with AEC experts. Section 4 lists and answers these competency questions,
but for lack of space this section first describes the main terms of the ontology.

Property states. The value of a property can undergo changes over time, e.g. during
the building design process or when managing an existing building. The Ontology for
Property Management (OPM) enables to describe these changes using L3-modeling of
properties of SEAS; reusing concepts from schema.org and PROV-O; and introducing
a few classes specific to property management. These classes are all subclasses of
opm:State, which itself is a subclass of seas:Evaluation and defined to differentiate with
other types of evaluations as follows. A opm:State is an evaluation holding the value
and metadata about a property that was true for the given time. Metadata must as
a minimum be the time of generation stated by prov:generatedAtTime, but preferably
also a prov:wasAttributedTo reference to the agent who created the state.

Current state and deleted states. So as to ensure efficient management of properties using
SPARQL engines, two subclasses of opm:State are defined to deal with property states:
opm:CurrentState, and opm:Deleted. PROV-O includes prov:generatedAtTime to indicate
the generation time of some resource. Achieving the most recent state can therefore be
accomplished by performing a sub-query to first achieve the most recent timestamp and
then find the particular opm:State instance that was generated at this time. However, this
query is (1) complex to write and (2) performs poorly. Therefore the opm:CurrentState
class was introduced to explicitly state that a property state is the most recent one. The
performance was evaluated by loading 50000 FoIs each having 5 properties with 5 states
(5,250,000 triples total) into a triplestore. Two queries (1) by prov:generatedAtTime and (2)
by opm:CurrentState were performed in order to retrieve the latest state of 100 properties.
From a cold start (1) returned a result in 6900 ms and (2) in 640 ms, meaning a time
reduction of a factor 10. A cold start was also evaluated by redoing each query 10 times
and registering the minimum query time. The cold start results were (1) 4780 ms and
(2) 630 ms respectively. The tests were performed on local triplestore served on a Lenovo
P50 laptop with Intel Core i7-6820HQ 2.70 GHz CPU and 32 GB 2133 MHz DDR ram.
In order to maintain the history of the project and to be able to revert to an earlier state,
data should never be removed from the knowledge graph. Using a opm:Deleted marker
class enables omission of deleted properties when querying the data store, while they can
still be stored in the same database. A deletion is reverted by introducing a new state
that inherits the properties of the most recent state with a property value assigned to it.

Property values. OPM does not provide a specific predicate for value assignment, but
instead encourages the use of schema:value for single values and, schema:minValue/
schema:maxValue for ranges.

https://w3id.org/opm#State
https://w3id.org/seas/Evaluation
https://w3id.org/opm#State
https://www.w3.org/TR/prov-o/#generatedAtTime
https://www.w3.org/TR/prov-o/#wasAttributedTo
https://w3id.org/opm#State
https://w3id.org/opm#CurrentState
https://w3id.org/opm#Deleted
https://www.w3.org/TR/prov-o/#generatedAtTime
https://w3id.org/opm#State
https://w3id.org/opm#CurrentState
https://www.w3.org/TR/prov-o/#generatedAtTime
https://w3id.org/opm#CurrentState
https://w3id.org/opm#Deleted
http://schema.org/value
http://schema.org/minValue
http://schema.org/maxValue

5

4 Demonstration of property management using OPM

In this section we show how to use OPM for managing properties in combination with
SEAS, schema.org, PROV-O and a certain schema defining domain-specific properties,
for example the emerging PROPS ontology for the AEC industry. For each of the compe-
tency questions below, that have been identified during interviews with AEC experts, a
small dataset and example queries were developed and implemented in an online demo.3

Competency question 1: How to semantically describe a property such that its value
is changeable while its historical record is maintained? Figure 1 illustrates how
to assign a property with OPM. The example presupposes that the object prop-
erty ex:someProperty is defined as a sub-property of seas:hasProperty, thereby in-
ferring that <foi> is an instance of seas:FeatureOfInterest, <prop> is an instance
of seas:Property, <foi> seas:hasProperty <prop> and that <prop> seas:isPropertyOf
<foi>. When modeling an OPM-compliant L3 property, the property instance must have
at least one seas:evaluation relation to a state (entails that the state is a seas:Evaluation
class) and the opm:CurrentState class must be assigned to the most recent state. A state
can host any metadata about the property, but should as a minimum have a value
and preferably a generation time assigned. In the example, schema.org is used for the
relation between the state and the actual value of the property and PROV-O is used
for assigning a generation time and the rdfs:domain of prov:generatedAtTime entails that
<state> becomes an instance of prov:Entity.

<prop> <state>

ex:someProperty
rdf:type rdf:type rdf:type

prov:generatedAtTime

rdf:type

schema:value

seas:FeatureOfInterest seas:Property

seas:hasProperty

seas:isPropertyOf

seas:evaluation

“some value”

seas:Evaluation
prov:Entity, opm:State

opm:CurrentState

“2018-03-22T12:00:00Z”^^xsd:dateTime

<foi>

Fig. 1: Modeling a property using states

Listing 4: Insert a new property and an initial property value.

INSERT {
?foiURI ?prop ?propURI .
?propURI seas:evaluation ?stateURI .
?stateURI a opm:CurrentState ;
prov:generatedAtTime ?now ;
schema:value ?val .

} WHERE {
BIND(<wall_A> as ?foiURI) # define URI of FoI
BIND(<wall_A#prop> as ?propURI) # define URI of Property
BIND(ex:thermalTransmittance as ?prop) # define property
BIND("0.27 W/(m2.K)"^^cdt:ucum as ?val) # define value
BIND(<wall_A#state> as ?stateURI) # define URI of State
BIND(NOW() as ?now) # get current time
Do not create a new property instance if the FoI already has it
MINUS { ?foiURI ?prop ?propURI }

}

http://www.student.dtu.dk/~mhoras/ldac2018/
https://w3id.org/seas/hasProperty
https://w3id.org/seas/FeatureOfInterest
https://w3id.org/seas/Property
https://w3id.org/seas/hasProperty
https://w3id.org/seas/isPropertyOf
https://w3id.org/seas/evaluation
https://w3id.org/seas/Evaluation
https://w3id.org/opm#CurrentState
http://www.w3.org/2000/01/rdf-schema#domain
https://www.w3.org/TR/prov-o/#generatedAtTime
https://www.w3.org/TR/prov-o/#Entity

6

Competency question 2: How to revise a property value? Making property revisions is
done by assigning a new seas:evaluation to the property instance. The new property is an
instance of opm:CurrentState. As there cannot be two current states of a property, the
class specifying that the previous property state was the current state must be removed.

<prop> <state>

rdf:type

rdf:type

prov:generatedAtTime

rdf:type

schema:valueschema:value

seas:Property

seas:evaluationseas:evaluation

“some value”“new value”

seas:Evaluation
prov:Entity

opm:CurrentState
opm:State

“2018-03-22T12:00:00Z”^^xsd:dateTime

<state2>
rdf:type

prov:generatedAtTime

rdf:type

seas:Evaluation
prov:Entity, opm:State

opm:CurrentState

“2018-03-23T13:00:00Z”^^xsd:dateTime

new state previous state
current previous

Fig. 2: Revising a property value. Revised state to the left and old property state to the right.

Listing 5: Update a property value.

DELETE { ?previousState a opm:CurrentState }
INSERT {
?previousState a opm:State .
?propURI seas:evaluation ?stateURI .
?stateURI a opm:CurrentState ;
prov:generatedAtTime ?now ;
schema:value ?val .

} WHERE {
BIND(<wall_A#prop> as ?propURI) # define URI of Property
BIND("0.25 W/(m2.K)"^^cdt:ucum as ?val) # define new value
BIND(<wall_A#state2> as ?stateURI) # define URI for State
BIND(NOW() as ?now) # get current time stamp
?propURI seas:evaluation ?previousState .
?previousState a opm:CurrentState ;
schema:value ?currentVal . # get value of current state

FILTER(?val != ?currentVal) # don't update if equal to latest state
}

Competency question 3: How to delete a property while still being able to retrieve the
history of it and not break all the links to derived properties that depend on it? Deleting
a property is done by assigning a new seas:evaluation to the property instance. The
new property state is both an instance of opm:CurrentState and opm:Deleted, and the
opm:CurrentState class of the previous current state is removed. Thereby the history
is maintained and metadata such as when, why and by whom the property was deleted
can be added to the opm:Deleted instance.

Listing 6: Delete property.

DELETE { ?previousState a opm:CurrentState }
INSERT {
?previousState a opm:State .
?propURI seas:evaluation ?stateURI .
?stateURI a opm:CurrentState , opm:Deleted ;

prov:generatedAtTime ?now .
} WHERE {
BIND(<wall_A#prop> as ?propURI) # define URI of Property
BIND(<wall_A#state3> as ?stateURI) # define URI of deleted State

https://w3id.org/seas/evaluation
https://w3id.org/opm#CurrentState
https://w3id.org/seas/evaluation
https://w3id.org/opm#CurrentState
https://w3id.org/opm#Deleted
https://w3id.org/opm#CurrentState
https://w3id.org/opm#Deleted

7

BIND(NOW() as ?now) # get current time stamp
?propURI seas:evaluation ?previousState .
?previousState a opm:CurrentState . # get current state
do not delete if the current state is already a opm:Deleted
MINUS { ?previousState a opm:Deleted }

}

<prop> <state3>

rdf:type

rdf:type

prov:generatedAtTime

rdf:type

rdf:typeschema:value

seas:Property

seas:evaluationseas:evaluation

opm:Deleted“new value”

seas:Evaluation
prov:Entity, opm:State

opm:CurrentState

“2018-03-24T14:00:00Z”^^xsd:dateTime

<state2>
rdf:type

prov:generatedAtTime

rdf:type

seas:Evaluation
prov:Entity

opm:CurrentState

“2018-03-23T13:00:00Z”^^xsd:dateTime

previous state deleted state

opm:State

previous current

Fig. 3: Deleting a property.

Competency question 4: How to restore a deleted property? Restoring a deleted property
is done by retrieving the metadata of the most recent property state that is not an
instance of opm:Deleted and copy this to a new state. It requires a sub-query to retrieve
the time stamp of such property state and this process can be resource intensive.
However, as it is not an everyday operation it is still acceptable. The reason for creating
a new state rather than just deleting the opm:Deleted instance along with its data is
to maintain the complete history (incl. deleted states) and record who restored the
property, why and when.

<prop> <state3>

rdf:type

rdf:type

prov:generatedAtTime

rdf:type

rdf:typeschema:value

seas:Property

seas:evaluationseas:evaluation

opm:Deleted“new value”

seas:Evaluation
prov:Entity

opm:CurrentState

“2018-03-24T14:00:00Z”^^xsd:dateTime

<state4>

restored state

rdf:type

prov:generatedAtTime

current previous

rdf:type

seas:Evaluation
prov:Entity, opm:State

opm:CurrentState

“2018-03-25T15:00:00Z”^^xsd:dateTime

deleted state

opm:State

Fig. 4: Restoring a property.

Listing 7: Restore property.

DELETE { ?previousState a opm:CurrentState }
INSERT {
?previousState a opm:State .
?propURI seas:evaluation ?stateURI .

https://w3id.org/opm#Deleted
https://w3id.org/opm#Deleted

8

?stateURI a opm:CurrentState ;
prov:generatedAtTime ?now ;
?key ?val .

} WHERE {
BIND(<wall_A#prop> as ?propURI) # define URI of Property
BIND(<wall_A#state4> as ?stateURI) # define URI of new State
BIND(NOW() as ?now) # get current time stamp
get time stamp of most recent property state that was not deleted
{ SELECT ?propURI (MAX(?time) AS ?t)
WHERE {

?propURI seas:evaluation ?s .
?s schema:value ?lastVal ;

prov:generatedAtTime ?time .
MINUS { ?s a opm:Deleted }

} GROUP BY ?propURI }
get key-value pairs of latest state that is not deleted
?propURI seas:evaluation [
prov:generatedAtTime ?t ;
?key ?val]

FILTER(?key != prov:generatedAtTime) # filter out time stamps
get previous state
?propURI seas:evaluation ?previousState .
?previousState a opm:CurrentState .

}

Competency question 5: How to retrieve the full history of how the value of a property has
evolved over time? The full history is simply retrieved by querying for all seas:evaluations
of the property.

Listing 8: Get property history.

SELECT ?dateTime ?value WHERE {
<wall_A#prop> seas:evaluation [
prov:generatedAtTime ?dateTime ;
schema:value ?value]

} ORDER BY ?dateTime

RESULTS
March 22, 2018 12:00 PM 0.27 W/(m2.K)
March 23, 2018 1:00 PM 0.25 W/(m2.K)
March 24, 2018 2:00 PM -
March 25, 2018 3:00 PM 0.25 W/(m2.K)

Competency question 6: How to retrieve only the latest value of a property? The
latest value is retrieved by querying for the seas:evaluation which is an instance of
opm:CurrentState. The result of the query in Listing 9 is simply "0.25 W/(m2.K)"^^cdt:ucum.

Listing 9: Get property value.

SELECT ?value
WHERE { <wall_A#prop> seas:evaluation [a opm:CurrentState ; schema:value ?value] }

Competency question 7: How to simplify a complex OPM property (using states) for
easier and faster querying? Simplification from L3 to L2 or even L1 can be handled,
but will consequently entail some information loss. For both L2 and L1 the property
history is lost since only the most recent property state is inferred.

When simplifying to L2 any key-value pair of the most recent state is inferred directly
to the property instance node. This approach has the advantage that all metadata
of the current state of the property such as property unit, provenance data etc. is
maintained. It will also still allow for the property value to be specified as a range

https://w3id.org/seas/evaluation
https://w3id.org/seas/evaluation
https://w3id.org/opm#CurrentState

9

using schema:minValue and schema:maxValue. The disadvantage is that the property
value is still two steps/relations away from the FoI.

When simplifying to L1 the value of the most recent state is inferred directly to the
FoI as a datatype property. The advantage is that it becomes very easy and fast to
query for the properties of a FoI. Units can still be assigned using custom datatypes
but simplifying to L1 comes with some disadvantages. First of all, no metadata can be
assigned and hence provenance data is lost and value ranges are not supported. Further,
it will be incorrect to use an owl:ObjectProperty as a owl:DatatypeProperty, and therefore
one of the following approaches must be considered: (1) the original property must be
described as an rdfs:Property meaning that the dataset becomes less descriptive (RDFS
level instead of OWL-DL level) or (2) when simplifying to L1 another predicate (a
owl:DatatypeProperty) must be inferred instead. The latter could be handled by adding
a suffix to the property URI as illustrated in Fig. 5 and have both an owl:ObjectProperty
and owl:DatatypeProperty described in the ontology.

<prop> <state>

ex:someProperty

ex:somePropertySimple

rdf:type rdf:type rdf:typerdf:type

prov:generatedAtTime

prov:generatedAtTime rdf:type

schema:value
schema:value

seas:FeatureOfInterest seas:Property

seas:hasProperty

seas:isPropertyOf

seas:evaluation

“some value”

seas:Evaluation
prov:Entity, opm:State

opm:CurrentState

“2018-03-22T12:00:00Z”^^xsd:dateTime

<foi>

Fig. 5: Simplifying a L3 property to L2 and L1.

Inferring the simplified properties along with the more complex property states makes
it easier to query the dataset, and there is no problem in having the data in the same
data store. Listing 10 shows an update query that will automatically update all datatype
level simplifications and a similar approach can be used for object property levels. These
queries could be run as a routine job (backward chaining). As an alternative, the same
dependency could simply be defined in SWRL rules (forward chaining). The latter
has the advantage that there will never be a situation where an outdated property is
returned, but it has the cost of a reduced query performance.

Listing 10: Simplify from OPM to simple datatype property.

DELETE { ?foi ?p ?simpleValOld } INSERT { ?foi ?p ?simpleValNew }
WHERE {
?foi ?p ?prop .
?prop seas:evaluation ?state .
?state a opm:CurrentState ;
schema:value ?simpleValNew .

Get old simplified value (if any)
OPTIONAL {
?foi ?p ?simpleValOld .
FILTER(?simpleValOld != ?prop) # don't delete L2 property
FILTER(?simpleValNew != ?simpleValOld) # don't update if unchanged

}
}

http://schema.org/minValue
http://schema.org/maxValue
http://www.w3.org/2002/07/owl#ObjectProperty
http://www.w3.org/2002/07/owl#DatatypeProperty
http://www.w3.org/2000/01/rdf-schema#Property
http://www.w3.org/2002/07/owl#DatatypeProperty
http://www.w3.org/2002/07/owl#ObjectProperty
http://www.w3.org/2002/07/owl#DatatypeProperty

10

5 Conclusions and Future Work

With this work, we propose an extension of the SEAS evaluation ontology with terms
specific to tracking properties that evolve over time. We use existing ontologies to
describe how to manage property changes of a building element; a wall instance, but
OPM is also relevant in any other domain that deal with properties that change over
time. The construction industry is rather fragmented, and in a construction project,
there are many interdependencies between properties. OPM could be a good foundation
for working with derived properties as it allows a derived property to be linked directly
to the specific state of its arguments. Further investigation of the potential of OPM
in relation to property interdependencies is therefore a future research topic of interest.

OPM can also be used to keep track of changes in BIM models received from
other project participants. Communicating with an OPM-compliant SPARQL endpoint
directly from a BIM authoring tool to store only state changes of properties could
save space and allow insights that comprises an interesting research subject. For legal
applications it would be interesting to investigate the use of blockchain technologies to
document traceable state changes using OPM. It would also be worth investigating the
possibility of having complex and simplified representations of properties co-existing,
and using any for answering queries.

Notes

1W3C LBD CG - https://www.w3.org/community/lbd
2OPM - https://w3id.org/opm
3http://www.student.dtu.dk/˜mhoras/ldac2018/

References

1. Bonduel, M.: Towards a PROPS ontology (2018), https://github.com/w3c-lbd-cg/lbd/
blob/gh-pages/presentations/props/presentation_LBDcall_20180312_final.pdf

2. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data on the
web. Communications of the ACM 59(2), 44–51 (2016)

3. Haller, A., Janowicz, K., Cox, S.J.D., Le Phuoc, D., Taylor, K., Lefrançois, M.:
Semantic Sensor Network Ontology. W3C Recommendation, W3C (Oct 19 2017),
https://www.w3.org/TR/vocab-ssn/

4. Hepp, M.: Goodrelations: An ontology for describing products and services offers on the
web. In: International Conference on Knowledge Engineering and Knowledge Management.
pp. 329–346. Springer (2008)

5. Kiviniemi, A., Fischer, M.: Requirements management interface to building product models
(2004)

6. Lebo, T., Sahoo, S., McGuiness, D.: PROV-O: The PROV Ontology. W3C Recommendation,
W3C (Apr 13 2013), https://www.w3.org/TR/prov-o/

7. Lefrançois, M.: Planned ETSI SAREF Extensions based on the W3C&OGC SOSA/SSN-
compatible SEAS Ontology Patterns. In: Proceedings of Workshop on Semantic
Interoperability and Standardization in the IoT, SIS-IoT, (July 2017)

8. Lefrançois, M., Kalaoja, J., Ghariani, T., Zimmermann, A.: SEAS Knowledge Model.
Deliverable 2.2, ITEA2 12004 Smart Energy Aware Systems (2016), 76 p.

9. Lefrançois, M., Zimmermann, A.: The unified code for units of measure in RDF: cdt:ucum
and other UCUM datatypes. In: Extended Semantic Web Conference (2018), demonstration
paper

https://www.w3.org/community/lbd
https://w3id.org/opm
http://www.student.dtu.dk/~mhoras/ldac2018/
https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/presentation_LBDcall_20180312_final.pdf
https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/props/presentation_LBDcall_20180312_final.pdf
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/prov-o/

	OPM: An ontology for describing properties that evolve over time

