Supporting Arbitrary Custom Datatypes in RDF and
SPARQL*

Maxime Lefrangois' and Antoine Zimmermann'

Ecole Nationale Supérieure des Mines, FAYOL-ENSMSE, Laboratoire Hubert Curien, F-42023
Saint-Etienne, France
{maxime.lefrancois,antoine.zimmermann}@emse. fr

Abstract. In the Resource Description Framework, literals are composed of a
UNICODE string (the lexical form), a datatype IRI, and optionally, when the
datatype IRI is rdf:1langString, a language tag. Any IRI can take the place of
a datatype IRI, but the specification only defines the precise meaning of a literal
when the datatype IRI is among a predefined subset. Custom datatypes have re-
ported use on the Web of Data, and show some advantages in representing some
classical structures. Yet, their support by RDF processors is rare and implemen-
tation specific. In this paper, we first present the minimal set of functions that
should be defined in order to make a custom datatype usable in query answering
and reasoning. Based on this, we discuss solutions that would enable: (i) data pub-
lishers to publish the definition of arbitrary custom datatypes on the Web, and (ii)
generic RDF processor or SPARQL query engine to discover custom datatypes
on-the-fly, and to perform operations on them accordingly. Finally, we detail a
concrete solution that targets arbitrarily complex custom datatypes, we overview
its implementation in Jena and ARQ, and we report the results of an experiment
on a real world DBpedia use case.

Keywords: literals, datatypes, RDF, linked data

1 Introduction

The Resource Description Framework empowers the Web of Data with three kinds of
entities: IRIs, blank nodes, and literals [3]. IRIs are obviously central as they allow the
interlinking of datasets and serendipitous discovery of more data. Blank nodes have
been the subject of several papers (a comprehensive review is found in [9]). Literals are
extremely important since they are, after all, the carriers of the data that is eventually
processed. In fact, we argue that IRIs are only crucial insofar as they offer a way of
traversing linked data towards the discovery of literal values.

RDF defines literals as being composed of a UNICODE string and a datatype IRI',
the latter being an arbitrary IRI that may refer to any datatype conforming to the defi-
nition in [3, §5]. The datatype that the IRI refers to gives meaning to the literals having

* This work has been supported by ITEA2 project SEAS 12004.
! And optionally a language tag when the datatype IRI is rdf: langString, but for the purpose
of this paper, we will simply consider literals as pairs.

that type. Indeed, by definition, a datatype defines what value the UNICODE string
represents in that type.

An RDF processor that is able to distinguish the values of literals for a given
datatype IRI is said to recognise the IRI. It is possible to program an RDF processor
such that it recognises a fixed set of IRIs by implementing the associated set of specifi-
cations. Usually, the set of recognised datatypes is the set of XSD datatypes. However,
even some RDF processors don’t process them in a uniform way [5]. And even then,
processors cannot compare literals with datatype IRIs they do not recognise. In this pa-
per, we want to address the case of a processor that does not necessarily recognise a
fixed set of IRIs but is able to determine the datatype associated with an IRI on the fly.
We provide motivating use cases for this in §2.

To achieve this, we first show that an RDF processor does not necessarily need
to “know” the actual datatype (which is a mathematical structure that cannot always
be represented in a computer format). Instead, for some reasoning or query answering
purposes, recognising a datatype amounts to using a small set of functions that can
usually be provided in a computer language. We describe these functions in §3. In §4,
we show several options for implementing an RDF processor that can take advantage
of a computerised description of these functions such that it can recognise some new
datatypes on the fly. We present our own implementation in §5. Our evaluation in §6
demonstrates that the approach does not introduce significant overhead while it makes
both publishing data easier, and writing more concise queries when compared to an
approach purely based on standard datatypes. §7 provides a critical discussion of the
overall approach and our specific implementation, with an overview of future work.

2 Use cases for on-the fly support of a new datatype

This section introduces several motivating use cases for enabling on-the-fly support of
custom datatypes in RDF processors and SPARQL query engines.

Sharing energy related data. In the ITEA2 SEAS project that partly funds this research,
industrial partners want to share energy-related data such as energy consumption and
production, capacities, temperatures, and they use various custom datatypes for repre-
senting these data. Sometimes, they use different datatypes to represent similar informa-
tion, such as ex1:wattHour, ex2:barrel0f0OilEquiv, and ex3:GJ for energy quantities.
RDF processors and SPARQL query engines cannot be updated for the support of each
individual datatype in use. Also, it is impossible to write a SPARQL query that selects
consumptions or productions that are within a given range. Instead, processors could
rely on a generic mechanism for automatically retrieving sufficient information for the
data to be processed, queried, and compared.

Distributed computation. In distributed and collaborative computing, it is necessary to
transfer the state of a program execution in a serialised form. A state can be shared as a
combination of metadata and serialised OOP objects that can be adequately represented
in RDF, with serialised objects being written as literals with a type indicating the class
membership. In this situation, it could be desirable to know which executions reach the

same state. This would be possible with a SPARQL query, had there been a mechanism
for associating the datatype IRI to the appropriate datatype definition.

Well known text literals. In the OGC standard GeoSPARQL [11], a datatype is de-
fined for serialising geolocated region of space, such as "LINESTRING(® 0, 1 1, 1
2, 2 2)"""geo:wktLiteral.”? However, wktLiteral can also specify a coordinate ref-
erence system that differs from the default CRS84 by adding a URI at the beginning
of the literal, e.g., "<http://www.opengis.net/def/crs/EPSG/0/4326> Point(33.95
-83.38)"""geo:wktLiteral. There is no restriction on the URI being used at this po-
sition in the standard, so some wktLiterals may not be understood even by processors
that implement the GeoSPARQL standard. Had the coordinate system been given as
a datatype IRI, and assuming a mechanism as we propose to dynamically obtain the
specification of the datatype, new coordinate systems could be supported as soon as
they appear.

3 Requirements for on-the fly support of a new datatype

In this section, we describe required functionalities to effectively recognise a datatype
IRI, but first we provide preliminary definitions. For clarity, we will then restrain to the
case when it is assumed that value spaces are pairwise disjoint before addressing the
more general case.

3.1 Preliminaries

As mentioned in Footnote 1, we only focus here on literals that do not have a language
tag. Therefore, from now on, a literal will be a pair comprising a UNICODE string
called the lexical form and an IRI called the datatype IRI. When we need to refer to an
arbitrary IRI, we use names of the form a, b, etc. with letters from the beginning of the
alphabet, while for arbitrary UNICODE string, we use names like s, t, etc. with letters
from the end of the alphabet. We first recall necessary definitions from the RDF 1.1
specifications.

Definition 1 (Datatype) A datatype D is a structure comprising the following compo-
nents:

— a set L(D) of UNICODE strings, called the lexical space;

— a set V(D), called the value space of D;

— amapping L2V(D) : L(D) — V(D), called the lexical-to-value mapping, that maps
all strings in the lexical space to a value in the value space.

To avoid paraphrasing RDF 1.1 Semantics, we only refer the most relevant defi-
nitions in [7]. In this paper, we rely heavily on the notion of recognised IRI, simple
D-interpretation, and D-entailment (or simple entailment recognising D) defined in [7,
§7]. We also utilise the extensions to RDF and RDFS-entailment recognising D from
§8 and §9. When an RDF processor recognises an IRI identifying a datatype D,, we say
that it supports D,,.

2 Subsequently, we will use geo: for http://www.opengis.net/ont/geosparql#. Simi-
larly, we will use usual prefixes rdf:, rdfs:, xsd:, and owl: in all examples.

3.2 Pairwise Disjoint Value Spaces

An RDF processor that supports a datatype D, identified by an IRI a must be able to
check two things: whether a UNICODE string belongs to the lexical space of D, or not,
and whether two literals with datatype D, share the same value.

Well-formedness Given a UNICODE string s, is the lexical form s well formed in D,,,
i.e., Does it belong to the lexical space of D,? Or equivalently, is literal "s"""a well
typed? i.e., s € L(D,).

For example, "12.5" is well formed in xsd:decimal, while "abc" is not (that is,
"12.5"""xsd:decimal is well typed, and "abc" " "xsd:decimal is ill-typed).

Equality Given two UNICODE strings s,t, do "s"""a and "t"""a share the same
value? i.e., L2V(D,)(s) = L2V (D,)(t).

For example, "0.50" " "xsd:decimal and ".5

xsd:decimal share the same value.

Note that if a UNICODE string is not in the lexical space of a datatype, then it does
not have a value. Hence, it would never be equal to any other literal value.

Concerning SPARQL query engines, basic graph matching only requires being able
to join values, and therefore nothing more than what precedes is needed. Now, SPARQL
offers an extension point related to filtering and ordering literals: SPARQL implemen-
tations may extend the XPath and SPARQL Tests operators {=,! =, <, >, <=,>=} [6].
Apart from testing equality, SPARQL engines may need to test the ordering of literals.

Value comparison Given two UNICODE strings s,t, is the value of "s"""a lower
(resp., greater) than the value of "t"""a? i.e., L2V(D,)(s) < L2V(D,)(t)
(resp., L2V(D,)(s) > L2V(D,)(t)).

These functionalities are sufficient to check for simple D-entailment between RDF
graphs, and even RDFS entailment recognising D, as long as the value spaces are infi-
nite (and we assume here they are disjoint), as shown in [4]. The case of RDFS reason-
ing recognising datatypes of finite size is tricky and discussed in §7.

3.3 Overlapping Value Spaces

Now, as justified by the use cases, datatypes value spaces may overlap. Practically, we
need to extend the equality and value comparison checking to different datatypes.

Cross-datatype equality Given two datatypes D, and D, respectively identified by
IRIs a and b, given two UNICODE strings (s,t) € L(D,) X L(D;), do "s"""a
and "t"""b share the same value? i.e., L2V(D,)(s) = L2V(D;)(t). For example,
"1"""ex2:barrelOfOilEquiv and "6.1178632e9" " "ex3:GJ share the same value.

Cross-datatype value comparison Given two datatypes D, and D), respectively iden-
tified by IRIs a and b, given two UNICODE strings (s,t) € L(D,) X L(Dy), is the
value of "s"""a lower (resp., greater) than the value of "t"""b?i.e., L2V(D,)(s) <
L2V(Dy)(t) (resp., L2V(D,)(s) > L2V(Dp)(t)).

For example, "1"""ex2:barrel0f0ilEquiv is bigger than "1"""ex3:GJ.

These functionalities are again sufficient to check for simple D-entailment between
RDF graphs. However, they may not be sufficient for RDFS entailment, even with infi-
nite value spaces. [4] proved that if any intersection of value spaces is infinite or empty,
then these functions would be sufficient to do correct and complete RDFS reasoning
recognising D (see §7 for more details). Note that if these constraints are not met, it
is still possible to perform sound reasoning that is complete on graphs that only use
the datatype IRIs in literals rather than as subject, predicate, or object. For example,
graphs can contain this type of triples: :s :p "1"""xsd:int, but not this type of triples:
:p rdfs:range xsd:integer.

4 Implementation Options

RDF processors that have to deal with a datatype IRI for which they do not have hard-
coded implementation should be able to retrieve a processable version of the functions
described in §3. This assumes that these functions can be computed. In general, it is not
the case. For instance, a datatype could encode a FOL formula, with the value space
being the set of equivalent class wrt FOL entailment. In this paper, we want to address
the most general case, namely when equality, well-formedness, and comparison are all
computable functions (i.e., that the associated decision problems are decidable).

For cross-datatype comparisons, our requirements suggest that it should be possible
to compare literals from any datatype to literals from any other. It is not practically
doable, so any solution would be partial. However, we want to provide a mechanism
that makes it possible to extend to an arbitrary large finite set of supported datatypes.

Clearly, any solution must involve an agreement between both the publisher® and
the consumer on a common mechanism for presenting and exploiting the required func-
tionalities. In an ideal situation, a standard would exist that would reduce the need for
coordinating between publishers and consumers. These functions could be provided by
a centralised datatype registration service, where publishers submit their datatype spec-
ification. However, such a solution is unpractical and at odd with basic web principles.

Therefore, in what follows, we focus on solutions that work on the principle that
the requested functions are accessible by way of dereferencing the datatype IRI. As a
matter of fact, this is precisely what RDF 1.1 Semantics suggests in §7. Therefore, in
this section, all the solutions that we describe require that datatype IRIs are HTTP IRIs.

Using processor-specific modules. ARQ and SESAME offer ways to register classes
that implement custom SPARQL filter functions. The support of custom datatypes could
be done in a similar way. Hence, the information these implementations would need to
get from the datatype IRI would be a jar with the necessary class, for instance. This so-
lution is reasonably simple, but it is implementation-specific, and the custom datatype
publisher would require to write one class for each RDF processor. It also presents se-
rious security issues, unless the RDF engine implements complicated control measures
to avoid executing harmful unknown compiled code.

3 Here, the publisher is the one that specifies the datatype associated with an IRL

Using functions defined in a script. Instead of using a compiled class for each imple-
mentation, this solution consists in providing the code of the required functions. The
burden of interpreting the code would then fall on the designers of RDF processors.
Nonetheless, a pivot language such as JavaScript, for which engine integration exists
in many programming languages, would make this solution viable. Moreover, it uses
the full expressivity of a programming language and hence enables the specification of
arbitrary custom datatype. We chose to follow this approach for our implementation
described in §5.

Using a web service. An alternative to provide the code directly would be to offer the
same functionalities encapsulated in a web service. The drawback of this approach com-
pared to a script is that the service needs high availability, the code cannot be cached,
compiled, and optimised. Otherwise, this approach is worth investigating and we expect
to do so in future work.

Declarative Vocabulary-based description. Using the full expressivity of a program-
ming language to describe a custom datatype is excessive in many cases. It would
hence be interesting to describe a datatype using a vocabulary, possibly inspired from
the OWL 2 datatype restrictions [16]. We are currently undergoing research to define
and use such a vocabulary, and this solution will be further discussed in §7.

In the context of this paper, we will focus on the script-based solution.

5 Script-based Support of Arbitrary Custom Datatypes

We focus on a solution where the custom datatype specification is defined using a
scripting language. This section defines a specific solution for this, where we use the
JavaScript language. Javascript has already been proposed as a language to implement
custom funtions in SPARQL [17]. The solution we propose consists of: (i) guidelines
for custom datatype publishers, including the definition of an API that the code in the
JavaScript document must implement (§5.1); (ii) guidelines for RDF processors and
SPARQL engines (§5.2). In a realistic setting, not all publishers will be following our
guidelines, so we provide more functionalities than strictly needed for datatype support
in order to make the approach robust to errors, corner cases, and missing information.
This can serve as a model for other implementations, whether they are script-based,
service-based, or declarative.

5.1 Guidelines for Datatype Publishers

The proposed solution requires to use an HTTP IRI a to identify datatype D,, and to
enable RDF processors and SPARQL engines to retrieve a JavaScript document from
the datatype IRI when they look up a with a HTTP Accept header field that contains
application/javascript (i.e., use content negotiation). Multiple datatypes may be de-
fined in the same document, such as xsd:string and xsd:int that are defined in the
same document at location http://www.w3.0rg/2001/XMLSchema. Hence the RDF
processor would not know what part of the code it should execute for each datatype.

Let D, be a datatype identified by IRI a. We propose that the code implements a simple
interface CustomDatatypeFactory, with a unique function getDatatype(iri). When
called with the string a, this function returns an object that holds the specification of
datatype D,, i.e., an instance of an interface CustomDatatype. We describe the methods
in interfaces CustomDatatypeFactory and CustomDatatype, and sketch the expected be-
haviour of their implementations. This API and a formal set of constraints is described
athttp://w3id.org/lindt. All these methods take string parameters, and can gen-
erate errors as specified below.
Interface CustomDatatype defines a single method, getDatatype.

CustomDatatype getDatatype (iri)

A retrieved document contains a specification of custom datatype D, identified by
an IRI a if and only if getDatatype(a) returns an object da that implements interface
CustomDatatype, and that complies with the set of constraints defined below. Such an
object is called the specification object of datatype D,.

Interface CustomDatatype defines the following set of methods.

String getIri(Q)

Boolean isWellFormed (lexicalForm)

Boolean recognisesDatatype (datatypelri)

String[] getRecognisedDatatypes ()

Boolean isEqual (lexForml, lexForm2[, datatypelri2])
Integer compare (lexForml, lexForm2[, datatypelri2])
String getNormalForm (lexicalForml)

String importLiteral (lexicalForm, datatypelri)
String exportLiteral (lexicalForm, datatypelri)

Let da be the implementation of CustomDatatype returned by a call to getDatatype(a),
i.e., da is the specification object of D,. First suppose that the value space of the defined
datatype is disjoint with that of every other datatypes.

isWellFormed. A string s is in the lexical space of D,, if and only if a call to da. isWellFormed(s)
returns boolean true.

isEqual. Two literals "s"""a and "t"""a have equal values if and only if a call to
da.isEqual(s, t) returns boolean true. This method must generate an error if
either s or t is not in the lexical space of D,. Finally, this method must be reflexive,
symmetric, and transitive.

getNormalForm. It is of great interest for RDF processors to be able to normalize
lexical forms. For instance in the context of datatype xsd: float, the normal form
of lexical form 42.0 is lexical form 4.2E1. Method getNormalForm must return a
string if the lexical form given as parameter is in the lexical space, or generate an
error otherwise. Finally, this method is coherent with da.isEqual. Among other
constraints, it is idempotent.

compare. This method must return a negative integer, zero, or a positive integer, de-
pending on if the value of the first parameter is lower, equal, or greater than the
value of the second parameter, respectively. It must generate an error if one of the
parameters is not well formed, or if the literals are not comparable. Finally this
method must be such that for any three well formed lexical forms s, t, and u,

— da.isEqual(s,t) © da.compare(s,t) =0;
— da.compare(s,t) X da.compare(t,s) <0;
— (da.compare(s,t) > 0) A(da.compare(t,u) > 0) = (da.compare(s,u) > 0).

For datatypes whose value space is considered to be disjoint with that of any other
datatype, the set of methods described above is sufficient to enable effective querying
and RDFS reasoning recognising D, as justified in §3.2. As the value space of a datatype
may intersect with that of other datatypes, interface CustomDatatype is completed as
follows:

recognisesDatatype. Suppose the publisher of datatype ex1:wattHour is aware of the
existence of datatype ex3:GJ, and knows how to compare values of ex1:wattHour
literals with ex3:GJ literals, while the inverse is not true. In this case, the methods of
the object that represents ex1:wattHour should be used to compare ex1:wattHour
literals with ex3:GJ literals, and not the opposite. A datatype must recognise itself,
but it does not need to recognise a datatype whose value space is disjoint with
its own. Datatype D, recognises datatype D identified by IRI b if and only if
da.recognisesDatatype(b) returns boolean true.
isEqual. This method has an optional parameter which is the datatype IRI of the second
literal. It must generate an error if the given IRI is not recognised. Given datatypes
D,, Dy, D, identified by IRIs a, b, ¢, such that D, and D,, are custom datatypes
with specification objects da and db, D, recognising D;, and D., D, recognising
D, lexical forms s and t well formed in D,, u well formed in D, and v well
formed in D, all of the following must be true:
— da.isEqual(s,t,a) =da.isEqual(s,t)
— a=c = da.isEqual(s,u,b) = db.isEqual(u,s,a)
— da.isEqual(s,u,b) and db.isEqual(u,v,c) = da.isEqual(s,v,c)
compare. This methods has an optional parameter which is the datatype IRI of the
second literal. It must generate an error if the given IRI is not recognised. Given the
same conditions as for isEqual, all of the following must be true:
— da.compare(s,t,a) = da.compare(s,t);
— da.isEqual(s,v,c) & da.compare(s,v,c) =0;
— da.compare(s,u,b) X db.compare(u,s,a) < 0;
— (da.compare(s,u,b) > 0)A(db.compare(u,v,c) > 0) = (da.compare(s,v,c)
> 0).
importLiteral. Given a datatype D, identified by IRI a and with specification object
da, this method takes as input a lexical form t and a datatype D, identified IRI b,
and returns a well formed lexical form s such that L2V(D,)(s) = L2V(Dy)(t). If
D, does not recognise b or if there exists no such well formed lexical form, then
the method must generate an error. Else, the following must be true:
— da.isEqual(da.importLiteral(t,b),t,b)
exportLiteral. Given a datatype D, identified by IRI a and with specification object da,
this method takes as input a lexical form s and another datatype D), identified by IRI
b, and returns a well formed lexical form t such that L2V(D,)(s) = L2V(D;)(t).
If D, does not recognise b, if s is not well formed, or if there exists no such well
formed lexical form, then the method must generate an error. Else, the following

must be true:
— da.isEqual(s,da.exportLiteral(s,b),b)

5.2 Guidelines for RDF/SPARQL Engines

When an RDF processor or a SPARQL query engine encounters a literal with an un-
known datatype D, identified by IRI a, it may attempt to retrieve the JavaScript docu-
ment located at URL a, using an HTTP GET request with an Accept header field that
contains application/javascript.

If it retrieves such a document, it may then call method getDatatype(a) to get a
specification object da of datatype D,. Lexical form validation or value comparisons
between literals must then be equivalent to calling methods of da, as specified in the
previous section. Finally, SPARQL query engines implement the following addition to
SPARQL 1.1 §15.1 recommendation [6]: given datatypes D, and D, identified by IRIs a
and b, D, being a custom datatype with specification object da and recognising Dy, then
when a SPARQL query engine compares two literals "s"""a and "t"" b, the ordering
of these two literals must match the one given by function da. compare(s,t,b).

To avoid security issues, the code may be executed in a sandbox environment with-
out further precaution; it may undergo some static formal verifications; or it may be
submitted to a trusted web service for approval. If the RDF processor or the SPARQL
query engine decides not to use the datatype specification object, the datatype must be
treated as an unrecognised datatype.

6 Implementation and Experiment

This section reports the implementation of these guidelines in Jena and ARQ, and the
results of an experiment on a real world DBpedia use case.

6.1 Publication of a simple custom datatype for length

For illustration purposes, we introduce a custom datatype to represent lengths. This
datatype is identified by IRThttp://w3id.org/lindt/v1/custom_datatypes#length,
abbreviated as cdt:1ength. Its lexical space is the concatenation of the lexical form of
an xsd:double, an optional space, and a unit that can be either a metric length unit,
or an imperial length unit, in abbreviated form or as full words, in singular or plural
form. The value space corresponds to the set of lengths, as defined by the International
Systems of Quantities, i.e., any quantity with dimension distance. The lexical-to-value
mapping maps lexical forms with units in the metric system to their corresponding
length according to the International Systems of Quantities, while the forms with an
imperial unit are mapped to their equivalent length according to the International yard
and pound agreement. For example, all literals below are well typed and share the same
value.

"1l mile"""cdt:length "1.609344km" " "cdt:length
"5280 ft""“cdt:length "1609.344 metre"”“cdt:length
"63360 inches"”"cdt:length "1.609344E+6 mm" "~ “cdt:length

We published a JavaScript implementation of the specification of cdt:length, fol-
lowing the guidelines of §5.1. We further followed best practices for data on the Web,
and serve the most appropriate document using content negotiation:

— if the HTTP header option Accept contains text/html or application/xhtml+xml,
then a HTML document containing a human readable description of datatype Length
is served;

— if it contains text/turtle, then a short RDF description of datatype Length is
served;

— if it contains application/javascript, then a JavaScript document that contains
the actual specification of custom datatype Length is served. This is equivalent to
calling http://w3id.org/lindt/v1/custom_datatypes. js#length

6.2 Implementation in Jena and ARQ

We implemented the support for on-the-fly custom datatype recognition in both the Jena

RDF processor, and the ARQ SPARQL engine.* It follows guidelines from §5.2, but for

now it only supports custom datatypes whose value space is disjoint from that of any

other datatype.

A new attribute enableDiscoveryOfCustomDatatypes has been added to class JenaParameters,

and package com.hp.hpl.jena.datatypes has been slightly modified as follows: If

Jena parameter

JenaParameters.enableDiscoveryOfCustomDatatypes is set to true, then:

1. When method getSafeTypeByName from class TypeMapper is called with an un-
known datatype IRI a, it calls static method getCustomDatatype of a new Jena
class CustomDatatype for a new instance of RDFDatatype.

2. This method first makes an HTTP call to a, with an Accept: application/javascript
HTTP header field, and follows redirects. If a JavaScript document is retrieved,
its code is evaluated in the default JavaScript script engine (Oracle Nashorn in
Java 1.8). An instance of interface CustomDatatypeFactory (see §5.1) is then com-
piled. Its method getDatatype is called and an instance of interface CustomDatatype
is compiled. This instance is wrapped in an instance of Jena class
CustomDatatype, and sent back to the TypeMapper.

3. Most methods of Jena class CustomDatatype wrap calls to the compiled instance of
interface CustomDatatype.

In ARQ), the main modification concerns class NodeValue in package com.hp.hpl. jena.spargl.expr,
which is used for the SPARQL operators equal and less-or-equal, and for the OR-
DER BY clause. When comparing node values, if their datatype is an instance of
CustomDatatype, then calls to the compiled instance of interface CustomDatatype are
made. A few other minor modifications have also been required:

— anew instance of ValueSpaceClassification has been added;
— in package com.hp.hpl. jena.sparql.expr.nodevalue, class NodeValueCustom has
been added, and class NodeValueVisitor has been modified.

4 https: //github.com/maximelefrancois86/jena.

6.3 Experiment

In this section we present the results of evaluating the proposed protocol, and report
on the performances on loading and querying three datasets based on DBpedia but with
different approaches for representing lengths. All the details, resources, and instructions
that enable the reproduction of this experiment can be found at URL http://w3id.
org/lindt.

Datasets. We base our datasets on the DBpedia 2014 English specific mapping-based
properties dataset, which contains 819,764 triples with 21 custom datatypes among
those DBpedia defines. From this, we extracted the 223,768 triples that describe lengths,5
i.e., those with the following datatypes:

http://dbpedia.org/datatype/millimetre
http://dbpedia.org/datatype/centimetre
http://dbpedia.org/datatype/metre
http://dbpedia.org/datatype/kilometre

For instance, the following triple represents the length of the Bathyscaphe Trieste
submarine.

dbpedia:Bathyscaphe_Trieste
<http://dbpedia.org/ontology/MeanOfTransportation/length>
"17983.2" " "dbpdt:millimetre .

We call this dataset pBpEDIA. From this dataset, we generated the dataset custom
by making all literals use the same datatype Length. For example, the same fact is
represented as follows:

dbpedia:Bathyscaphe_Trieste
<http://dbpedia.org/ontology/MeanOfTransportation/length>
"17983.2 mm" " "cdt:length .

Finally, we generated a third dataset, Qupt, which used the QUDT [8] ontology to
model the same facts. This is among the alternative choices for representing physical
measures that only relies on standard datatypes and encode the relationship between
the value and the unit in a graph, using an ontology of quantities.® As an example,
the length of the Bathyscaphe Trieste submarine may be modelled as follows with the
QUDT ontology:

dbpedia:Bathyscaphe_Trieste
<http://dbpedia.org/ontology/MeanOfTransportation/length>
[qudt:quantityValue
[qudt:numericValue "17983.2"" "xsd:double ;
qudt:unit qudt-unit:millimetre]]

3 This dataset is available at http://wiki.dbpedia.org/Downloads#3.

¢ Note that using complex graph structures for representing physical quantities would solve
the problem of datatype support, but it displaces the problem to the level of ontologies, as
there exists many for describing measurements (in chronological order, UCUM in OWL [2],
MUO [13], QUDV [1], OM [14], QUDT [8]).

Finally, each dataset has been derived in four datasets, that contain the first 100%,
50%, 25%, and 12.5% of the original dataset.

Queries Besides evaluating the loading time of each dataset, we evaluated the querying
time of the following simple query: Return the 100 triples that concern the biggest
lengths that are lower than 5 m, order the results according to the descending order of
the length. Depending on the dataset, this query writes differently. Let us just note the
conciseness of the query for dataset custom:

PREFIX cdt: <http://w3id.org/lindt/v1/custom_datatypes#>
SELECT ?x ?prop ?length WHERE {
?x ?prop ?length .
FILTER(datatype(?length) = cdt:length
&& ?length < "5m"""cdt:length)

}
ORDER BY DESC(?length)
LIMIT 100

Experiment protocol and results For a given dataset, the experiment consists in re-
peating 100 times: (i) resetting the TypeMapper instance, (ii) loading the dataset, and
(iii) querying the dataset and iterating through all the results. Duration of steps ii and
iii were measured, and we report below the average duration and the standard devi-
ation of these durations. We led twice the experiment for datasets custom: once with
“cold start”, where the custom datatype is discovered and loaded during step (ii), and
once with “hot start”, where the custom datatype is manually loaded before step (ii).
This difference only affects loading times. The experiments were run on a server with a
64 bits Intel Xeon® CPU E5-1603 v3 processor with 4 cores at 2.80 GHz, it has 32 GB
DDR3 RAM and is running Ubuntu 14.04 LTS.

Tables 1a and 1b report loading and querying times, respectively. Loading times of
datasets custom are very close to those of datasets QupT, with on average 468 ms penalty
for discovering and loading the custom datatype in the case of cold start. On the other
hand, datasets custom have the best performance regarding querying time.

— Querying time of datasets custom is between 33% and 47% that of datasets DBPEDIA.
This can be explained by the fact that the query for dataset pBreDIA hides actually
4 queries: one for each datatype that represents a length. We believe this difference
would grow if dbpedia was using more custom datatypes to represent lengths.

— Querying datasets custoM is also slightly faster than querying datasets QupT, except
for 100% of triples. Yet, the query for datasets QupT actually has an anchor IRI to
start with, whereas the base of the query for dataset custom has none.

To evaluate the impact of having an IRI anchor, we derived a second SPARQL query,
HEIGHT, by fixing the predicate URI to http://dbpedia.org/ontology/Person/
height. Table Ic reports querying times of this query on datasets custom and QUDT.
Fixing this IRI has a greater impact on querying time of datasets custom than on
datasets QupT, because this query already had anchor IRIs. These results show that cus-
tom datatypes have low impact on loading and querying time, while increasing the
genericity of this solution.

Table 1: Average and standard deviation of loading or querying time of datasets (in ms).
CUSTOM, CUSTOM,

DBPEDIA | cold start | hot start ‘ QUDT

12.5%] 155(=10) | 915(53) | 469(=85) | 381(%82)

25% | 350(£12) | 1434(x46) | 980(+36) | 892(x13)

50% | 731(x16) | 2498(£57) | 2013(+46) [1829(%33)

100% [1640(£57)|4659(:155)|4173(x128)[3796(=68)

(a) Average and standard deviation of loading time of datasets (in ms).

DBPEDIA ‘ CUSTOM ‘ QUDT ‘ CUSTOM ‘ QUDT
12.5%| 416(x38) | 195(x12) | 267(x66) 12.5%] 35(x1) | 12(=47)
25% | 833(x16) | 391(x13) | 532(£26) 25% | 78(x4) [213(x13)
50% | 2371(x42) | 784(x26) |1079(=118) 50% | 154(x3) |411(x26)
100% |4158(£256)|1593(£98)| 1143(+73) 100% |402(+35)|329(:84)

(b) Average and standard deviation of query- (c) Average and standard deviation of evalua-
ing time of datasets (in ms). tion of query HEIGHT (in ms).

7 Discussion

Our proposal is only partially addressing the problem of dealing with custom datatypes
in a generic way. It also has shortcomings that we discuss here, with possible ways to
avoid them. We first discuss the drawbacks of our implementation. We then describe
possible extensions of our work to more completely support custom datatypes process-
ing, and emphasise the relationship with OWL 2 custom datatype definitions. We then
examine how well our proposal enables D-entailment reasoning.

Drawbacks. Executing code found online presents a potential security threat. However,
the CustomDatatypeFactory indirection already represents a kind of protection. Actual
custom datatype specification objects may be stored as private members of function
getDatatype(iri). Then, the next loaded executable code cannot modify its definition.
The RDF processor must be sure that the next loaded executable code could not mod-
ify previously loaded executable codes, and that it calls the right getDatatype(iri)
method to get the definition of D: the one that has been retrieved at its IRI. The RDF
processor could also execute the code in a sandbox environment, or perhaps apply static
analysis to identify harmful code.

Besides, the use of a full-fledged programming language is a bit of an overkill for
simple cases such as restricting existing datatypes. We discuss the case of a declarative
description of the datatype.

Extending datatype description. In several cases, a simple declarative description of
a datatype is sufficient. As a matter of fact, OWL 2 already provides means to define
datatypes that restrict some of the W3C-standard datatypes using constraining facets

xsd:length, xsd:minLength, xsd:maxLength, and xsd:pattern. Similarly, we could
provide a declarative description of custom datatypes based on other existing ones.
Examples of what this vocabulary could represent include:

— A datatype for lengths could be derived from a datatype for measured quantities in
all units, as proposed by the Unified Code for Units of Measure [15];

— Describing composite datatypes, formed from the combination of lexical separa-
tors and multiple standard literals (e.g., vectors of xsd:integer). An RDF proces-
sor could then use its support of the derived datatypes to support the composite
datatype;

— XSD type definition components and facets [12] could be provided declaratively;

— Direct relationships between datatypes could be used, such as disjointness or sub-
typing. From an operational point of view, such relations could speed up decisions
but would have complicated consequences on reasoning.

Such a vocabulary would favour the interlinking of datatypes.

Reasoning with custom datatypes. The expressiveness of RDF with custom datatypes
is unlimited. To make this clear, consider a datatype where the lexical space is the set
of Turtle documents, and the value space contains the equivalent classes of RDF graphs
according to the OWL 2 RDF-based semantics entailment regime (a.k.a OWL 2 Full).
The lexical-to-value mapping is the obvious mapping from the documents to their class
of equivalent OWL Full ontologies. Equivalence in OWL 2 Full is known to be unde-
cidable [10] and therefore, D-entailment when D contains such a datatype is undecid-
able. Therefore, reasoning with datatypes is generally undecidable. In fact, even simple
datatypes can impact D-entailment reasoning deeply, as witnessed by the following ex-
ample:

rdfs:Resource rdfs:subClassOf xsd:nonNegativeInteger,
xsd:nonPositiveInteger .

These two triples are inconsistent in RDFS recognising {xsd:nonNegativeInteger,
xsd:nonPositiveInteger} but reasoners implemented in Jena, Corese, and Sesame are
unable to detect it. However, as noted in §3, under certain constraints on datatype value
spaces or input graphs, our solution allow correct and complete reasoning for RDFS
recognising D. Even in a more general case, reasoning is at least sound.

8 Conclusions

Custom datatypes are currently frown upon because they do not facilitate interoperabil-
ity. If custom datatypes could be more easily supported generically, it would ease the
publication of some domain-specific datasets which otherwise are difficult to represent
with standard datatypes. We defined requirements for supporting arbitrary datatypes in
reasoning and querying and proposed a concrete solution that requires that the designers
of new datatypes follow guidelines that are in line with Linked Data principles. Assum-
ing these guidelines are followed, RDF processors and SPARQL engines can effectively
take advantage of custom datatypes on-the-fly, modulo a little overhead in implementing

support for our proposal. We empirically demonstrated that performance is not much
impacted, compared to a standard implementation. In some cases, relying on custom
datatypes leads to better results than restructuring the data to only use standard ones.
Arguably, in the use cases we identified, custom datatypes make data publishing more
flexible, intuitive, and efficient. Nonetheless, we are conscious of some of the shortcom-
ings of our approach and are investigating other directions for concretely implementing
the requirements, based on a linked datatype vocabulary and web services. Finally, we
want to investigate more deeply real needs from data publishers in exposing their own
datatypes to the open Web.

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

17.

Quantities, Units, Dimensions, Values (QUDV). SysML 1.2 Revision Task Force Working
draft, Object Management Group, October 30 2009.

Luis Bermudez. The Unified Code for Units of Measure in OWL. OWL ontology, 2006.
Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and Abstract
Syntax, W3C Recommendation 25 February 2014. W3C Recommendation, W3C, Febru-
ary 25 2014.

. Jos de Bruijn and Stijn Heymans. Logical Foundations of RDF(S) with Datatypes. Journal

of Artificial Intelligence Research, 38:535-568, 2010.

. Ian Emmons, Suzanne Collier, Mounika Garlapati, and Mike Dean. Rdf literal data types in

practice. In Proc. of The 7th International Workshop on Scalable Semantic Web Knowledge
Base Systems, volume 1, 2011.

. Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language - W3C Working Draft 5

January 2012. W3C Working Draft, W3C, January 5 2012.

. Patrick Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics, W3C Recommendation 25

February 2014. W3C Recommendation, W3C, February 25 2014.

. Ralph Hodgson, Paul J. Keller, Jack Hodges, and Jack Spivak. QUDT - Quantities, Units,

Dimensions and Data Types Ontologies . Technical report, NASA, 2014.

. Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. Everything you always

wanted to know about blank nodes. Journal of Web Semantics, 27:42-69, 2014.

Boris Motik, Bernardo Cuenca-Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz. OWL 2 Web Ontology Language Profiles (Second Edition), W3C Recommendation
11 December 2012. W3C Recommendation, W3C, December 11 2012.

Matthew Perry and John Herring. OGC GeoSPARQL - A Geographic Query Language for
RDF Data. Ogc implementation standard, Open Geospatial Consortium, September 10 2012.
David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S.
Thompson. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, W3C
Recommendation 5 April 2012. W3C Recommendation, W3C, April 5 2012.

Luis Polo and Diego Berrueta. MUO - Measurement Units Ontology, Working Draft DD
April 2008. Working draft, Fundacién CTIC, April 2008.

Hajo Rijgersberg, Mark van Assem, and Jan L. Top. Ontology of units of measure and related
concepts. Semantic Web Journal, 4(1):3-13, 2013.

Gunther Shadow and Clement J. McDonald. The Unified Code for Units of Measure. Tech-
nical report, Regenstrief Institute, Inc., October 22 2013.

. W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second

Edition), W3C Recommendation 11 December 2012. Technical report, W3C, 2012.
Greg Williams. Extensible SPARQL functions with embedded javascript. In Proc. of the
Workshop on Scripting for the Semantic Web, 2007.

