
A SPARQL extension for generating RDF from
heterogeneous formats∗

Maxime Lefrançois, Antoine Zimmermann, Noorani Bakerally

Univ Lyon, MINES Saint-Étienne, CNRS, Laboratoire Hubert Curien UMR 5516,
F-42023 Saint-Étienne, France

{maxime.lefrancois|antoine.zimmermann|noorani.bakerally}@emse.fr

Abstract. RDF aims at being the universal abstract data model for structured
data on the Web. While there is effort to convert data in RDF, the vast majority
of data available on the Web does not conform to RDF. Indeed, exposing data
in RDF, either natively or through wrappers, can be very costly. Furthermore,
in the emerging Web of Things, resource constraints of devices prevent from
processing RDF graphs. Hence one cannot expect that all the data on the Web
be available as RDF anytime soon. Several tools can generate RDF from non-
RDF data, and transformation or mapping languages have been designed to offer
more flexible solutions (GRDDL, XSPARQL, R2RML, RML, CSVW, etc.). In
this paper, we introduce a new language, SPARQL-Generate, that generates RDF
from: (i) a RDF Dataset, and (ii) a set of documents in arbitrary formats. As
SPARQL-Generate is designed as an extension of SPARQL 1.1, it can provably:
(i) be implemented on top on any existing SPARQL engine, and (ii) leverage the
SPARQL extension mechanism to deal with an open set of formats. Furthermore,
we show evidence that (iii) it can be easily learned by knowledge engineers that
know SPARQL 1.1, and (iv) our first naive open source implementation performs
better than the reference implementation of RML for big transformations.

1 Introduction

We aim at lowering the overhead for web services and constrained things to embrace
the Semantic Web formalisms and tool. A usual key step is to generate RDF from doc-
uments having various formats (or triplify). Indeed, companies and web services store
and exchange documents in a multitude of data models and formats: the relational data
model and XML (not RDF/XML) are still very present, data portals heavily rely on
CSV, and web APIs on JSON. Furthermore, constrained things on the Web of things
may be only able to support binary formats such as EXI or CBOR. Although effort
has been made to define RDF data formats that are also compatible with the formats in
use (e.g., RDF/XML is compatible with XML, JSON-LD is compatible with JSON, any
EXI version of RDF/XML is compatible with EXI, etc.), it is unlikely that these formats
will completely replace existing data formats one day. However, the RDF data model

∗This paper has been partly financed by the ITEA2 12004 SEAS (Smart Energy Aware Sys-
tems) project, the ANR 14-CE24-0029 OpenSensingCity project, and a bilateral research con-
vention with ENGIE R&D.

may still be used as a lingua franca to reach semantic interoperability and integration
and querying of data having heterogeneous formats.

Several pieces of research and development focused on generating RDF from other
models and formats, and sometimes led to the definition of standards. However, in the
context of projects we participate in, we identified use cases and requirements that ex-
isting approaches satisfy only partially. These are reported in Section 2 and include:

– the solution must be expressive, flexible, and extensible to new data formats;
– the solution must generate RDF from several data sources with heterogeneous for-

mats, potentially in combination with a RDF dataset;
– the solution should be easy to learn and to integrate in a typical semantic web

engineering workflow, so that knowledge engineers can learn it easily to start pro-
totyping triplifications.

Section 3 describes existing solutions and identify their limitations. In order to sat-
isfy these requirements, we introduce SPARQL-Generate, an extension of SPARQL 1.1
that answers the aforementioned requirements and combines the following advantages:
(1) it leverages SPARQL’s expressivity and flexibility, including the standard extension
mechanism for binding functions; (2) it may be implemented on top of any existing
SPARQL engine.

The rest of this paper is organized as follows. Section 4 formally specifies the ab-
stract syntax and semantics of the SPARQL-Generate language. These definitions en-
able to prove in Section 5.1 that it can be implemented on top of any existing SPARQL 1.1
engine, and propose a naive algorithm for this. Section 5.2 briefly describes a first open-
source implementation on top of Apache ARQ, which has been tested on use cases
from the related work and more. Finally, Section 5.3 proposes a comparative evaluation
between SPARQL-Generate and RML on two aspects: performance of the reference
implementations, and cognitive complexity of the query/mapping.

2 Use-Cases and Requirements

We identified two important use cases for generating RDF from heterogeneous data
formats. They are originating from projects in which the stakeholders require strong in-
teroperability in consuming and exchanging data, although data providers cannot afford
the cost to move towards semantic data models.

Open data. In the context of open data, organizations can rarely afford the cost of
cleaning and reengineering their datasets towards more interoperable linked data. They
sometimes also lack the expertise to do so. Therefore, data is published on a best ef-
fort basis in the formats that require least labour and resources. Yet, data consumers
expect more uniform, self describing data sets that can be easily cross-related. In the
case when a knowledge model has been agreed upon, it is important for the users to
be able to prototype transformations to RDF from one or more of these data sources,
potentially in different formats. In addition, the solution should be flexible enough to al-
low for fine-grained control on the generated RDF and the links between data sets, and
should be able to involve contextual RDF data. The list of formats from which RDF

may be generated must be easily extended. Finally, the solution must be easily used by
knowledge engineers that know RDF and SPARQL.

Web of Things. In the emerging Web of Things, constrained devices must exchange
lightweight messages due to their inherent bandwidth, memory, storage, and/or battery
constraints. Yet, RDF formats have to encode a lot of textual information such as IRIs
and literals with datatype IRIs. Although some research is led to design lightweight for-
mats for RDF (such as a CBOR version of JSON-LD), it is likely that companies and
device vendors will continue to use and introduce new binary formats that are optimized
for their usage.

From these use cases, we identify the following requirements:

R1: transform several sources having heterogeneous formats;
R2: contextualize the transformation with an RDF Dataset;
R3: be extensible to new data formats;
R4: be easy to use by Semantic Web experts;
R5: integrate in a typical semantic web engineering workflow;
R6: be flexible and easily maintainable;
R7: transform binary formats as well as textual formats.

With these requirements in mind, the next section overviews existing solutions.

3 Related work

Data publisher and consumer can implement ad-hoc transformation mechanisms to gen-
erate RDF from data with heterogeneous models and formats. Although this approach
certainly leads to the most efficient solutions, it is also costly to develop and maintain,
and inflexible. Several pieces of work aimed at simplifying this task.

Many converters to RDF have been listed by the W3C Semantic Web Education and
Outreach interest group (SWEO): https://www.w3.org/wiki/ConverterToRdf. Most of them
target a specific format or specific metadata, such as ID3tag, BibTeX, EXIT, etc. Some
like Apache Any23, datalift, or Virtuoso Sponger are designed to convert multiple data
formats to RDF. Direct Mapping [1] describes a default transformation for relational
data. These solutions are very ad hoc, implementation specific and barely allow the
control of how RDF is generated. They do not provide a formal language that would
allow to explicit and customize the conversion to RDF. As a result, the output RDF
is often more geared towards describing the structure of the data rather than the data
itself. It is still possible to compose these solutions with SPARQL construct rules that
transform the generated RDF to the required RDF, but this requires to get familiar with
the vocabulary used in the output of each of these tools. They hence do not satisfy most
of the requirements listed in Section 2.

Other approaches propose to use a transformation or mapping language to tune the
RDF generation. However, most of these solutions target only one or a few specific data
models (e.g., the relational model) or formats (e.g., JSON). For instance GRDDL en-
courages the use of XSLT and targets XML inputs [2]. XSPARQL is based on XQuery

and originally targeted XML [11], as well as the inverse transformation from RDF
to XML, before being extended to the relational data model [10], then to JSON [4].
GRDDL and XSPARQL rely respectively on XSLT and XQuery, that have been proven
to be Turing-complete. These languages are hence full-fledged procedural programming
language with explicit algorithmic constructs to produce RDF.

Other formalisms have been designed to generate RDF from the relational data [7].
From these pieces of work originated R2RML [3], which proposes a RDF vocabulary
to describe mappings to RDF. Finally, CSVW [12] also adopts this approach but targets
the CSV data format.

One approach that stands out is RML [5], that extends the R2RML vocabulary to
describe logical sources which are different from relational database tables. It gener-
ates RDF from JSON (exploiting JSONPath), XML (exploiting XPath), CSV1, TSV, or
HTML (exploiting CSS3 selectors). The approach is implemented on top of Sesame2.
RML satisfies at least requirements R1, R3, R5. It would be possible to implement the
support of binary data formats (R7), and ongoing research are led to integrate RDF
sources on the Web of Linked Data (R2). Only RML and XSPARQL are specifically
dedicated to the flexible generation of RDF from various formats.

In what follows, we propose an alternative to these approaches that is based on an
extension of SPARQL 1.1, named SPARQL-Generate, that leverages its expressiveness
and extensibility, and can be implemented on top of its engines.

4 SPARQL-Generate specification

SPARQL-Generate is based on a query language that queries the combination of an
RDF dataset and what we call a documentset, where each document is named and typed
by an IRI. For illustration purposes, Figure 1 is an example of a SPARQL-Generate
query and the result of its execution on a RDF dataset that contains a default graph,
and on a documentset that contains two documents identified by <position.txt> and
<measures.json>. This query answers the question: “What sensors are nearby, and what do
they display?”.3 The concrete SPARQL-Generate syntax extends that of SPARQL 1.1
with three new clauses:

– The source clause is used to bind a variable to a document (here, ?pos and ?measures
to the documents identified by <position.txt> and <measures.json>, respectively).

– The iterator clause allows to extract bits of documents using so-called iterator func-
tions, duplicate a binding, and make a variable be successively bound to these ex-
tracted bits of documents (here, function sgiter:JSONListKeys is used to extract the set
of keys of the JSON object that is bound to ?measures, and successively bind ?sensorId
to these keys).

– Finally, the generate clause replaces and extends the construct clause with embed-
ded SPARQL-Generate queries. This enables the modularization of queries and the
factorization of the RDF generation.

1RML is an implementation of the CSV on the Web standard [12]
2http://rdf4j.org/
3Prefixes correspond to those registered at http://prefix.cc/ and are omitted to save space.

Various data formats can be supported thanks to the extensible set of SPARQL 1.1
binding functions and SPARQL-Generate iterator functions.

Default graph (Turtle)

<s25> a :TempSensor ;
geo:lat 38.677220 ;
geo:long -27.212627 .

<s26> a :TempSensor ;
geo:lat 37.790498 ;
geo:long -25.501970 .

<s27> a :TempSensor ;
geo:lat 37.780768;
geo:long -25.496294 .

Document position.txt

37.780496,-25.495157

Document measures.json

{ "s25": 14.24,
"s26": 18.18 }

Output (Turtle)

<s26> a :NearbySensor ;
:temp 18.18 .

<s27> a :NearbySensor .

SPARQL-Generate query

GENERATE {
?sensor a :NearbySensor .

GENERATE {
?sensorIRI :temp ?temp .
}
ITERATOR sgiter:JSONListKeys(?measures) AS ?sensorId
WHERE {
BIND(IRI(?sensorId) AS ?sensorIRI)
FILTER(?sensor = ?sensorIRI)
BIND(CONCAT("$." , ?sensorId) AS ?jsonPath)
BIND(sgfn:JSONPath(?measures , ?jsonPath) AS ?temp)
} .
}
SOURCE <position.txt> AS ?pos
SOURCE <measures.json> AS ?measures
WHERE {
BIND(sgfn:SplitAtPosition(?pos,"(.*),(.*)",1) AS ?long)
BIND(sgfn:SplitAtPosition(?pos,"(.*),(.*)",2) AS ?lat)
?sensor a :TempSensor .
?sensor geo:lat ?slat .
?sensor geo:long ?slong .
FILTER(ex:distance(?lat, ?long, ?slat, ?slong) < 10)
}

Fig. 1: Example of a SPARQL-Generate query execution on a default graph and two
documents. This running example illustrates requirements R1 and R2

4.1 SPARQL-Generate Concrete Syntax

The SPARQL-generate syntax is very close to the standard SPARQL 1.1 syntax with
only slight additions to the EBNF [6, §19.8]:

[174] GenerateUnit ::= Generate
[175] Generate ::= Prologue GenerateQuery
[176] GenerateQuery ::= ’GENERATE’ GenerateTemplate DatasetClause* IteratorOrSourceClause*

WhereClause? SolutionModifier
[177] GenerateTemplate ::= ’{’ GenerateTemplateSub ’}’
[178] GenerateTemplateSub ::= ConstructTriples? (SubGenerateQuery ConstructTriples?)*
[179] IteratorOrSourceClause ::= IteratorClause | SourceClause
[180] IteratorClause ::= ’ITERATOR’ FunctionCall ’AS’ Var
[181] SourceClause ::= ’SOURCE’ FunctionCall (’ACCEPT’ VarOrIri)? ’AS’ Var
[182] SubGenerateQuery ::= ’GENERATE’ (SourceSelector | GenerateTemplate) (

IteratorOrSourceClause* WhereClause? SolutionModifier ’.’)?

While the production of SPARQL Queries and SPARQL Updates respectively start
at QueryUnit and UpdateUnit, the production of a SPARQL-Generate query starts at rule
GenerateUnit. We wanted to not rewrite any of the SPARQL 1.1 production rules, this is
why we do not use construct and introduce generate instead. This concrete syntax has
two notable features.

Negotiating the document type. The first notable feature is in production rule [181]. The
optional part (’ACCEPT’ VarOrIri) allows to specify a type IRI for the document to bind in
the source clause. If a SPARQL-Generate implementation chooses to look up the IRI
of a document on the Web, they may retrieve different actual documents corresponding
to different representations of the same resource. The optional accept component in the
source clause is thought of as a hint for the implementation to choose how to negotiate
the content of that resource. We chose to represent it as a IRI that identifies a document
type, because the concept of content negotiation here goes beyond the usual HTTP
Accept request header. It may also encompass other HTTP Accept-* parameters, and it
may also describe other preferences to look up IRIs not related to the HTTP protocol.
After negotiation with the server, the retrieved document type may be different from the
requested document type.

Modularization and reuse of queries. The second feature is in production rule [182],
and enables to modularize queries. A SPARQL-Generate sub-query (i.e., a query in the
generate part of a parent query) may contain a generate template, including graph
patterns and potentially other sub-queries. It can also refer to a IRI. As for the docu-
mentset, implementations are free to choose how this IRI must be looked up to retrieve
the identified SPARQL-Generate query. This feature does not need to be described in
the abstract syntax, but allows in practice (i) to publish queries on the Web and make
them callable by other, and (ii) to modularize large queries and make them more read-
able. Of course, implementations need to take care about loops in query calls.

For now, SPARQL-Generate implementations are free to choose whether and how
they use these informations. Section 5.2 describes the choices we made for our own
implementation on top of Apache Jena. Let us now introduce the abstraction of the
SPARQL-Generate syntax.

4.2 Abstract Syntax

We note I, B, L, and V the pairwise disjoint sets of IRIs, blank nodes, literals, and
variables. The set of RDF terms is T “ IY BY L. The set of triple patterns is defined
as TYVˆ IYVˆTYV, and a graph pattern is a finite set of triple patterns. The set of
all graph patterns is denoted P. We denote F0 the set of SPARQL 1.1 function names,4

which is disjoint from T. We write Q the set of SPARQL 1.1 query patterns. Finally, for
any set X, we note X˚ “

Ť

ně0 Xn the set of lists of X.
The set of function expressions is noted E and is the smallest set such that:

TY V Ď E (e.g., <position.txt>) (1)
pF0 Y Iq ˆ pTY Vq˚ Ď E (e.g., CONCAT("$.",?id), sgiter:JSONListKeys(?m)) (2)
@E Ď E, pF0 Y Iq ˆ E˚ Ď E (i.e., the set of nested function expressions) (3)

The abstraction of production rule [181] is the set of source clauses, and enable
to select a document in the documentset and bind it to a variable. For instance in the

4SPARQL 1.1 defines built-in functions with names IF, IRI, CONCAT, and so on.

query above, variable ?pos is bound to the document identified by <position.txt>. Let us
introduce a special element ω < TYV, that represents null, and let us note X̂ “ XYtωu
the generalized set of X.

Definition 1 (source clauses). The set S of source clauses is defined by equation
S “ E ˆ pÎ Y Vq ˆ V. We use notation v source

ÐÝxe, ay P S for a specific source clause,
where v P V, e P E, and a P ÎY V.

In most use cases, at some point one needs a given variable to iterate over several
parts of the same document. For instance in the illustrating request, variable ?sensorId is
successively bound to the keys of the JSON object bound to ?measures: "s25" and "s26".
Other examples include the results of a XPath query evaluation over a XML document,5

or the matches of a regular expression over a string.6 In SPARQL, binding clauses
involving binding functions are the only way through which one could extract a term
from a literal. Yet, these functions output at most one RDF term. So they cannot be used
to generate more solution bindings. Consequently, we introduce a second extension, the
set of iterator clauses, which output a set of terms, and replace the current solution
binding with as many solution bindings as there are elements in that set.

Definition 2 (iterator clauses). The set of iterator clauses is defined as I “ IˆE˚ˆV.
We use notation v iterator

ÐÝ pu, e0, . . . , ekq P I for a specific iterator clause, where v P V,
u P I, e0, . . . , ek P E, and k P N.

We then extend the query pattern of SPARQL 1.1 queries Q with a list of source
and iterator clauses, in any number and any order. We purposely do not change the
definition of Q in order to facilitate the reuse of existing SPARQL implementations.

Definition 3 (SPARQL-Generate query patterns). The set of SPARQL-Generate query
patterns is defined as a sequence of source or iterator clauses followed by a query pat-
tern: Q` “ pSY Iq˚ ˆ Q

Finally, the set of SPARQL-Generate queries augments Q` with a basic graph pat-
tern, and potentially other SPARQL-Generate sub-queries.

Definition 4 (SPARQL-Generate queries). The set of SPARQL-Generate queries is
noted G, and defined as the least set such that:

Pˆ Q` Ď G (simple SPARQL-Generate queries) (4)

@G Ď G,PˆG˚ ˆ Q` Ď G (nested SPARQL-Generate queries) (5)

SPARQL-Generate queries defined by Eq. 4 are comparable to SPARQL CON-
STRUCT queries, where a basic graph pattern will be instantiated with respect to a set
of solution bindings. Those defined by Eq. 5 contain nested SPARQL-Generate queries,
which are used to factorize the generation of RDF. For example, this enables to first gen-
erate RDF from the name of all the JSON object keys, and then iterate over the values
for these keys, which may be arrays.

5See test case rmlproeg1 - http://w3id.org/sparql-generate/tests-reports.html
6See test case regexeg1 - http://w3id.org/sparql-generate/tests-reports.html

4.3 SPARQL-Generate Semantics

This section reuses some concepts from the SPARQL 1.1 semantics, that we redefine in
an uncommon, yet equivalent, way for convenience in notations and definitions.

Definition of the SPARQL-Generate data model. A SPARQL-Generate query is issued
against a data model that extends the one of SPARQL, namely RDF dataset. An RDF
dataset is a pair xD,Ny such that D is an RDF graph, called the default graph, and N is
a finite set of pairs xu,Gy where u is an IRI and G is an RDF graph, such that no two
pairs contain the same IRI. In order to allow the querying of arbitrary data formats, we
introduce the notion of a documentset, analogous to RDF datasets.

Definition 5 (Documentset). A documentset is a finite set of triples ∆ Ď I ˆ Î ˆ L.
An element of ∆ is a triple xu, a, xd, tyy where: u is the name of the document; a is
the requested type for the document; literal xd, ty models the document; and the literal
datatype IRI t is the document type. ∆ must be such that no pair of distinct triples share
the same two first elements.

In order to lighten formulas, we also note ∆ : T̂ ˆ T̂ Ñ L̂ the mapping that asso-
ciates a pair xu, ay to a literal l if and only if xu, a, ly P ∆, and to ω otherwise. A set of
documents can hence be stored internally, or represent the Web: u represents where a
look up (e.g., a series of HTTP GET following redirections) must be issued, a describes
how the content must be negotiated, d is the content of the successfully obtained repre-
sentation, and t describes the representation type (its media type, language, encoding,
etc.).

Mappings. The set of mappings is notedM, and is defined by Eq. (6) as a function from
T Y V to the generalized set of terms. As opposed to standard SPARQL 1.1, we use a
total function defined on the full set of terms and variables, and rely on the element ω
to represent the image of unbound variables. As in SPARQL, The domain of a mapping
is the set of variables that are bound to a term (see Eq. (7)).

µ : TY V Ñ T̂ s.t., @t P T, µptq “ t (6)
@µ PM, dompµq “ tv P V|µpvq P Tu (7)

We introduce a distinguished set of mappings called substitution mappings, whose
domain is a singleton. i.e., @v P V and t P T̂, rv{ts is a substitution mapping with:

@t1 P T, rv{tspt1q “ t1, rv{tspvq “ t, and @x P V, x , v, rv{tspxq “ ω (8)

Then, the left composition operator # is defined such that in µ1 #µ2, any variable that
is commonly bound by µ1 and µ2 is finally bound to its value in mapping µ1. In practice,
this may be used to override bindings for variables in source or iterator clauses.

µ1 # µ2 :

$

’

&

’

%

x ÞÑ µ1pxq if x P dompµ1q

x ÞÑ µ2pxq if x P dompµ2qzdompµ1q

x ÞÑ ω otherwise
(9)

Binding and iterator function map. Each SPARQL engine recognizes a set of binding
function IRIs Fb (e.g. here, at least sgfn:JSONPath, sgfn:SplitAtPosition, and ex:distance). A
binding function maps function expressions used in binding clauses to their evaluation,
i.e., a RDF term. Formally, for a given SPARQL engine, Eq. (10) defines a binding
functions map fb, that associates to any recognized binding functions its SPARQL bind-
ing function. The SPARQL-Generate iterator functions map is defined analogously for
a SPARQL-Generate engine (e.g. here, it recognizes at least sgiter:JSONListKeys), except
the evaluation of a function expression is a set of RDF terms. Given a set Fi of recog-
nized iterator functions, Eq. (11) defines the iterator functions map fi:

fb : Fb Ñ
`

T̂˚ Ñ T̂
˘

(10) fi : Fi Ñ
`

T̂˚ Ñ 2T̂˘ (11)

Generalized mappings. We generalize the definition of mappings so that their domains
include the set of function expression. The set of generalized mappings is noted M̄. It
contains the generalization µ̄ of every mapping µ P M, where µ̄ : T Y V Y E Ñ T̂ is
defined recursively as follows:

@t P TY V, µ̄ptq “ µptq (12)
@xu, e1, . . . , eny P E s.t. u P Fb, µ̄pxu, e1, . . . , enyq “ fbpuqpµ̄pe1q, . . . , µ̄penqq (13)

Evaluation of source and iterator clauses. A source clause v source
ÐÝ xe, ay P S is used

to modify the binding µ so that variable v is bound to a document in ∆ (e.g, ?pos is
bound to "37.780496,-25.495157"). An iterator clause v iterator

ÐÝxt, e0, . . . , eky P I is typically
used to extract important parts of a document: from a binding µ, it enables, to generate
several other bindings where variable v is bound to elements of the evaluation of fiptq
over e0, . . . , ek (e.g. here, ?sensorIdwill be successively bound to "s25" then to "s26"). Any
number of source or iterator clauses can be combined in a list. Let Σ P pS Y Iqn, and
n ě 1. The set of solution mappings (i.e., the evaluation) for any list of source and
iterator clauses rrΣssµ∆ can be defined by induction as follows:

rrv source
ÐÝxe, ayssµ∆ “ rv{∆pµ̄peq, aqs # µ (14)

rrv iterator
ÐÝxt, e0, . . . , ekyss

µ
∆ “

rv{t1s # µ|t1 P fiptqpµ̄pe0q, . . . , µ̄pekqq
(

(15)

rrxΣ, v source
ÐÝeyssµ∆ “

rrv source
ÐÝessµ

1

∆ |µ
1 P rrΣss

µ
∆

(

(16)

rrxΣ, v iterator
ÐÝeyssµ∆ “

ď

µ1PrrΣss
µ
∆

rrv iterator
ÐÝessµ

1

∆ (17)

Evaluation of SPARQL-Generate query patterns. Let Q P Q be a SPARQL 1.1 query
pattern, D be an RDF dataset, and rrQssµD be the set of solution mappings for Q that
are compatible with a mapping µ, as defined by the SPARQL 1.1 semantics. Let also Σ
be a list of source and iterator clauses. Then the evaluation of the SPARQL-Generate
query pattern Q` “ xΣ,Qy P pS Y Iq˚ ˆ Q over D and a documentset ∆ is defined
by Eq. (18). We introduce a special initial mapping, µ0 : v ÞÑ ω,@v P V. Then, the set

of solution mappings of any SPARQL Generate query Q` over ∆ and D is defined by
Eq. (19).

rrQ`ssµ∆,D “
ď

µ1PrrΣss
µ
∆

rrQssµ
1

D (18) rrQ`ss∆,D “ rrQ`ss
µ0
∆,D (19)

Generate part of the SPARQL Generate query. For any graph pattern P P P and any
mapping µ P M, we note Ãµ

pPq the RDF Graph generated by instantiating the graph
pattern with respect to a mapping µ, following [6, §16.2.1]. We then define the eval-
uation of SPARQL-Generate queries recursively. Let be a simple SPARQL-Generate
query xP,Qy P Pˆ Q`, another query G “ xP,G0, . . . ,G j,Qy P Pˆ G˚ ˆ Q`, and a
mapping µ. The following three equations define the RDF graph generated by G.

Ãµ
∆,DpxP,Qyq “

ď

µ1PrrQssµ∆,D

Ãµ1

pPq (20)

Ãµ
∆,DpxP,G0, . . . ,G j,Qyq “

ď

µ1PrrQssµ∆,D

´

Ãµ1

pPq Y
ď

0ďiď j

Ãµ1

∆,DpGiq

¯

(21)

Ã∆,DpGq “ Ãµ0
∆,DpGq (22)

5 Implementation and Evaluation

5.1 Generic approach

It is advantageous to be able to implement SPARQL-Generate on top of any existing
SPARQL 1.1 engine. In fact, such an engine already provides us with: (i) the binding
functions map fb (thus one can know for any mapping µ P M its generalization µ̄ to
any binding function expression); (ii) a function select that takes a SPARQL 1.1 query
pattern as input, and returns a set of solution mappings; (iii) a function instantiate that
takes a graph pattern P P P and a mapping µ PM as input, and returns the RDF Graph
corresponding to the instantiation of P with respect to µ; (iv) the management of RDF
datasets D. Then an implementation of SPARQL-Generate would just need to provide:
(1) the management of a documentset ∆, and (2) the iterator functions map fi.

Let V “ 2M be the set of inline data blocks. Then we note xV,Qy P Q the result
of prefixing some SPARQL query Q P Q by some inline data block V P V. Theorem 1
below allows us to design a naive algorithm (Algorithm 1) that can be used to implement
SPARQL-Generate on top of a SPARQL 1.1 engine.

Theorem 1. Let be a SPARQL 1.1 query Q P Q, and a list of source and iterator
clauses Σ P pSYIq˚. The evaluation of the SPARQL-Generate query pattern xΣ,Qy P
Q` is equal to the evaluation of xrrΣss∆,Qy, where rrΣss∆ is the evaluation of Σ.

Proof. First note that in the SPARQL 1.1 semantics, the evaluation of a SPARQL 1.1
query pattern Q prefixed by an inline data block V is a join between the evaluation
of V (i.e., rrVssD “ V), and the evaluation of Q (i.e., rrQssD). With our notations, this

translates to: rrxV,Qyss “
Ť

µPV rrQss
µ. Substituting V by rrΣss∆ “ rrΣss

µ0
∆ and combining

with equations 18 and 19 leads to the proof:

rrxrrΣss
µ0
∆ ,Qyss∆,D “

ď

µ1PrrΣss
µ0
∆

rrQssµ
1

∆,D “ rrxΣ,Qyss
µ0
∆,D “ rrxΣ,Qyss∆,D (23)

Algorithm 1 Naive implementation of SPARQL-Generate on top of any SPARQL 1.1
engine. 7

1: procedure generate(xP,G0, . . . ,G j, xE0, . . . , Eny,Qy, µ) Ź See also Def. 4
2: M Ð tµu Ź M is a singleton containing one mapping
3: for 0 ď i ď n do
4: if Ei “ v source

ÐÝe then Ź See also Def. 1
5: for all µ P M do
6: µpvq Ð ∆pµ̄peqq Ź See also Def. 5 and Eq. 12
7: end for
8: else if Ei “ v iterator

ÐÝxt, e0, . . . , eky then Ź See also Def. 2
9: M1 ÐH

10: for all µ P M do
11: for all t1 P fiptqpµ̄pe0q, . . . , µ̄pekqq do Ź See also Eq. 11
12: µ1 Ð µ ; µ1pvq Ð t1 ; and M1 Ð M1 Y tµ1u

13: end for
14: end for
15: M Ð M1 Ź replace M by M1

16: end if
17: end for
18: M Ð selectpxM,Qyq Ź evaluate the query pattern prefixed by the computed inline data

block
19: G ÐH Ź the empty RDF graph
20: for µ P M do
21: G Ð G Y instantiatepP, µq Ź operate a RDF graph union (not merge), i.e., do not

merge blank nodes even if they share the same name
22: for 0 ď i ď j do
23: G Ð G Y generatepGi, µq

24: end for
25: end for
26: return G
27: end procedure

5.2 Implementation on top of Apache Jena

This section overviews a first implementation of SPARQL-Generate with Algorithm 1
over the Jena ARQ SPARQL 1.1 engine.

7This algorithm is simplified and does not show subtleties in the management of blank nodes,
which will be the focus of a future paper. On the other hand, the implementation already addresses
this, see unit tests bnode1 and bnode2 at http://w3id.org/sparql-generate/tests-reports.html.

Open-source code and online testbed. This implementation is open-source and avail-
able on GitHub,8,9 released as a Maven dependency,10 can also be used as an executable
jar, or as a Web API. SPARQL-Generate can also be tested online using a web form that
calls the Web API.11 The SPARQL-Generate editor uses the YASGUI library,12 which
has been modified to support the SPARQL-Generate syntax. Finally, one can load any
of the library unit tests in this web form. These unit tests cover use cases from related
work and more.13

Supported data formats, and extensibility. Binding and iterator functions are avail-
able for the following formats: JSON and CBOR (exploiting JSONPath, thus satisfying
requirement R7), CSV and TSV (conforming to the RFC 4180, or custom), XML (ex-
ploiting XPath), HTML (exploiting CSS3 selectors), and plain text (exploiting regular
expressions). A complete documentation of the available binding and iterator functions
is available along with the documentation of the API.14 The implementation relies on
Jena’s SPARQL binding function extension mechanism, and copies it for iterator func-
tions. Therefore, covering a new data format in this implementation merely consists in
implementing new binding and iterator functions like in Jena. This satisfies requirement
R3. Even what is not covered by existing query languages can be implemented as an
iterator function. For example, iterator function iter:JSONListKeys iterates on key names
of a JSON object, which is not feasible using JSONPath. As another example, poly-
morphic binding function fn:CustomCSV enables to parse a CSV document with or without
a header. Parameters guide the parsing and data extraction from CSV documents with
sparse structures, but the function itself checks for the existence of a header. If present,
it treats the parameter column as a string to refer to a column. Else, it treats is as the
column index. This function hence covers the Dialect Description of CSVW.

Specific implementation choices (see §4.1). For the documentset ∆, this implementa-
tion uses the FileLocator Jena utility. It hence looks up a IRI depending on its scheme,
except if a configuration file explicitly specifies a mapping to a local file. For now, the
FileLocator does not look up for IRIs with schemes other than http and file. The imple-
mentation still covers these cases in two ways: (a) they may be explicitly mapped to
local files, or (b) they may be provided to the engine through some initial binding. For
instance, test case named cborvenueeg1, featuring CBOR, uses option (a).

If the source clause accept option is set to some IANA media-type URI of the form
http://www.iana.org/assignments/media-types/text/csv, then the library negotiates the speci-
fied media type with the server.15 In any other case, the datatype of retrieved documents
defaults to xsd:string.

8http://w3id.org/sparql-generate/get-started.html
9https://github.com/thesmartenergy/sparql-generate

10http://search.maven.org/#search|ga|1|sparql-generate
11http://w3id.org/sparql-generate/language-form.html
12http://yasqe.yasgui.org/
13http://w3id.org/sparql-generate/tests-reports.html
14http://w3id.org/sparql-generate/functions.html
15There is no consensus on the mapping between URIs and Internet Media Types, althought

this is the object of a W3C TAG finding [13].

Similarly, when a query calls another query with its IRI, the implementation uses
the FileLocator Jena utility. If not explicitly mapped to a local file, then the implemen-
tation uses the SPARQL-Generate registered media type application/vnd.sparql-generate
(file extension .rqg) as the Accepted media type to fetch it on the Web.16

5.3 Evaluation

As RML is the language that most closely satisfies the identified needs, we conducted
a comparative evaluation of it and SPARQL-Generate. This evaluation focuses on two
aspects: performances of the reference implementations, and cognitive complexity of
the query/mapping. For this purpose, we chose to focus on a very simple transformation
from CSV documents generated by GenerateData.com to RDF. For every line, a few triples
with the same subject, fixed predicates, and objects computed from one column, are
generated. The report and the instructions to reproduce this experiment are available
online.17

Performance of the reference implementations. Figure 2 shows that for this simple
transformation, the execution time with sparql-generate-jena becomes faster than RML-Processor
above„1,500 rows, and linear. It is slightly above 3 min for 20,000 rows for sparql-generate-jena,
when RML-Processor takes more than 6 min for 5,000 rows. Granted, comparing imple-
mentations does not necessarily highlight the true qualities of the approaches since
optimizations, better choices of software libraries, and so on, could dramatically impact
the results. Yet, with these experiments, we show that a straightforward and relatively
naive implementation on top of Jena ARQ we achieve competitive performances. We
argue that ease of implementation and use is the key benefit of our approach.

102 103 104 105

100

101

102

of rows

se
co

nd
s

RML
SPARQL-Generate

Fig. 2: Execution time for a simple transformation from CSV documents to RDF. Com-
parison between the current RML-Processor and sparql-generate-jena implementations.

Cognitive complexity of the query/mapping. We conducted a limited study of the cog-
nitive complexities of the languages we are comparing. On the experiment transforma-
tions, there are 12 terms from the R2RML and RML vocabularies, while SPARQL-
Generate adds only 4 tokens to SPARQL 1.1 (source, iterator, sgiter:CSV and sgfn:CSV).

16https://w3id.org/sparql-generate/language.html#IANA_considerations.
17https://w3id.org/sparql-generate/evaluation.html

Moreover, we realized that semantic web experts that have to carry on a triplification
task usually observe the input data to identify the parts that have to be selected and for-
malize it with a selection pattern, such as a XPath or JSONPath query; then they draw
an RDF graph or a graph pattern where they place the selected data from the input. This
closely matches the structure of a SPARQL-generate query. The where clause contains
the bindings that correspond to the select parts of the input documents; the generate
clause contains the output graph patterns that reuse the extracted data. We also noticed
that when RML mappings get complex, they tend to grow to larger files than the equiv-
alent SPARQL generate query, as can be witnessed by comparing our equivalent test
cases.18 These limitations in RML may be explained by the fact it extends R2RML
whose triple maps are subject-centric. If one requires several triples to share the same
object, then one must write several triple maps, that would have the same object map.
This limitation impacts the cognitive complexity of the language. On the other hand, as
the SPARQL-Generate concrete syntax is very close to that of SPARQL 1.1, we claim
it makes it easy to learn and use by people that are familiar with the Semantic Web
formalisms, satisfying requirement R4 and R5. Nevertheless, from our own experi-
ence writing SPARQL-Generate queries, we identified some syntactic sugars that could
strongly improve readability and conciseness of the queries. For instance one could use
binding functions directly in the generate pattern, or use curly-bracket expressions in-
stead of concatenating literals. Using such techniques, the running example query could
be simplified as follows:
GENERATE {
<http://example.com/person/{sgfn:CSV(?person,"PersonId")}> a foaf:Person ;
foaf:name sgfn:CSV(?person, "Name") ;
foaf:mbox <mailto:{sgfn:CSV(?person,"Email")}> ;
foaf:phone <tel:{sgfn:CSV(?person,"Phone")}> ;
schema:birthDate "{sgfn:CSV(?person,"Birthdate")}"^^xsd:dateTime ;
schema:height "{sgfn:CSV(?person,"Height")}"^^xsd:decimal ;
schema:weight "{sgfn:CSV(?person,"Weight")}"^^xsd:decimal .

} SOURCE <http://example.org/persons.csv> AS ?persons
ITERATOR sgiter:CSV(?persons) AS ?person

Flexibility and extensibility of the languages. Work has been led to make RML be
able to call external functions [8]. This is not necessary for SPARQL-Generate, and
we believe that knowledge engineers are already familiar with SPARQL 1.1 functions,
filtering capabilities, and solution sequence modifiers. This satisfies requirement R6.

6 Conclusion and Future Work

The problem of exploiting data from heterogeneous sources and formats is common on
the Web, and Semantic Web technologies can help in this regard. However, adopting
Semantic Web technologies does not automatically clear up those strong integration
issues. Different solutions have been proposed to generate RDF from documents in het-
erogeneous formats. In this paper, we introduced a lightweight extension of SPARQL 1.1
called SPARQL-Generate, and compared it with the related work. We formally defined
SPARQL-Generate and proved that it is (i) easily implementable on top of existing

18See unit tests starting with RML‹ at http://w3id.org/sparql-generate/tests-reports.html

SPARQL engines; (ii) modular since extensions to new formats do not require a redefi-
nition of the language (thanks to the use of SPARQL custom functions); (iii) easy to use
by knowledge engineers because of its resemblance to normal SPARQL; and (iv) pow-
erful and flexible thanks to the custom function mechanism, the filtering capabilities,
and the solution sequence modifiers of SPARQL 1.1. Our open-source implementation
on top of Apache Jena covers many use cases, an is proven to be more efficient than
the reference implementation of RML on a simple use case. Future plans consist of im-
plementing more functions for more data formats, and extending the implementation to
enable on the fly function integration (with an approach similar to [9]).

References

1. Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan Sequeda. A Direct
Mapping of Relational Data to RDF. W3C Recommendation, W3C, September 27 2012.

2. Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages (GRDDL).
W3C Recommendation, W3C, September 11 2007.

3. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF Mapping
Language. W3C Recommendation, W3C, September 27 2012.

4. Daniele Dell’Aglio, Axel Polleres, Nuno Lopes, and Stefan Bischof. Querying the Web
of Data with XSPARQL 1.1. In Proceedings of the ISWC Developers Workshop 2014, co-
located with the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda,
Italy, 2014.

5. Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens, and
Rik Van de Walle. RML: A Generic Language for Integrated RDF Mappings of Heteroge-
neous Data. In Proceedings of the Workshop on Linked Data on the Web, co-located with the
23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, 2014.

6. Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Recommendation,
W3C, March 21 2013.

7. Matthias Hert, Gerald Reif, and Harald C. Gall. A comparison of RDB-to-RDF map-
ping languages. In Proceedings the 7th International Conference on Semantic Systems,
I-SEMANTICS 2011, Graz, Austria, pages 25–32, 2011.

8. Ademar Crotti Junior, Christophe Debruyne, and Declan O’Sullivan. Incorporating functions
in mappings to facilitate the uplift of CSV files into RDF. In Proc. Extended Semantic Web
Conference, ESWC, May 2016.

9. Maxime Lefrançois and Antoine Zimermann. Supporting Arbitrary Custom Datatypes in
RDF and SPARQL. In Proceedings of the Extended Semantic Web Conference, ESWC, May
2016.

10. Nuno Lopes, Stefan Bischof, and Axel Polleres. On the semantics of heterogeneous querying
of relational, XML, and RDF data with XSPARQL. In Proceedings of the 15th Portuguese
Conference on Artificial Intelligence - Computational Logic with Applications Track, 2011.

11. Axel Polleres, Thomas Krennwallner, Nuno Lopes, Jacek Kopecký, and Stephan Decker.
XSPARQL Language Specification. W3C Member Submission, W3C, January 20 2009.

12. Jeremy Tandy, Ivan Herman, and Greg Kellogg. Generating RDF from Tabular Data on the
Web. W3C Recommendation, W3C, December 17 2015.

13. Stuart Williams. Mapping between URIs and Internet Media Types. TAG Finding, W3C,
May 27 2002.

