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Dynamic Reconfiguration of Smart Sensors:
A Semantic Web based Approach

Samya Sagar, Maha Khemaja, Maxime Lefrançois, and Issam Rebai

Abstract—This paper aims to tackle issues related to the
(re-)configuration of Smart Objects. These latter are composed
specifically of smart sensors that embed basic sensors, a micro-
controller and software snippets as well. In order to make this
(re-)configuration feasible at runtime, we propose a semantic Web
based approach that relies on a set of ontology modules together
with a set of logical rules and reasoning processes to drive the
(re-)configuration mechanism while taking into account, at the
same time, requirements of the application domain. We validate
our approach by means of a prototype that shows relevance of
developed ontologies and (re-)configuration mechanism.

Index Terms—Ontology modeling, smart sensor, Reconfigura-
tion, Domain Modeling

I. INTRODUCTION

Nowadays, the Internet of Things integrates sensor networks
to the Internet continuously and opens up new opportunities to
enable the development of systems or ecosystems mixing vir-
tual and physical worlds, in order to assist people during their
everyday lives. The IoT allows objects to be omnipresent and
to interact with each other, to cooperate with their neighbors
in order to answer to a common goal. These objects are coined
Smart Objects, as they are everyday objects which, in addition,
integrate smart sensors and provide a set of interesting services
to their users. A watch, a car, a cloth are such kinds of Smart
Objects.

The number of these Smart Objects has increased con-
siderably, thus inducing the emergence of many research
works. These tackle different aspects and target many differ-
ent but related visions: the Object Oriented Vision (Things-
oriented), the Internet Oriented vision (Internet-Oriented) and
the Semantic Oriented vision (Semantic-Oriented) [1]. This
latter vision attempts to address issues related to semantic
heterogeneity and interoperability of resources (mainly data)
that are exchanged between Smart Objects. It also addresses
the issue related to the smartness of connected objects (i.e.
where this smartness is embedded and how).

In the present paper we are concerned with the semantic
vision. More specifically, we aim to tackle issues related to
semantic modeling and representation of Smart Objects as
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well as the underlying semantic mechanism that we pro-
pose in order to enable (re-)configuration of those objects
at runtime. Hence, we propose in this paper, a semantic
Web based approach that enables to deal semantically with
the (re-)configuration of the embedded behavior (software
snippets) of Smart Objects. The (re-)configuration mechanism
consists of updating in an automatic and intelligent manner
the configuration of the considered objects. It specifically
makes decisions about the software snippets to install and the
other ones to uninstall in order to answer accurately and on
time to the domain’s requirements (the right sensed and/or
computed or derived data at the right time with the right
accuracy). The software snippets represent and implement the
logical processing and behavior of Smart Objects. They are
stored, retrieved and installed from specific repositories that
are created, enriched and shared between different develop-
ment teams and stakeholders. The semantic (re-)configuration
mechanism is driven by the Smart Objects characteristics and
their context of use. The approach we propose relies on a set of
ontological modules that compose the SMartSensing Ontology
(SMS ontology). The main contributions of this paper are
therefore twofold: (1) the SMS modules and (2) the semantic
mechanism for (re-)configuration of smart sensors.

The reminder of the paper is organized as follows: Section II
presents the research context as well as a motivating sce-
nario that illustrates (re-)configuration requirements for Smart
Objects or smart sensors. Section III presents and analyzes
existing (re-)configuration solutions. It also allows us to high-
light needs for a novel (re-)configuration approach which
is semantic based. Section IV describes the SMS ontology
which is a set of ontological modules describing smart sensing
capabilities and Smart Objects characteristics and on which
relies the (re-)configuration mechanism we propose. Section V
details this mechanism together with the set of logical rules
expressing conditions that drive it. Section VI presents a
prototype for validation and experimentation showing advan-
tages and efficiency of the SMS ontology and the developed
reconfiguration mechanism. Section VII draws conclusions of
the present work and gives insights for future work.

II. MOTIVATION AND CONTEXT DESCRIPTION

This section highlights the research context related to Smart
Objects adaptation and specifically the (re-)configuration of
smart sensors. Moreover, it describes a motivating scenario for
(re-)configuration of a smart cloth that is used for sports. Smart
clothes are Smart Objects that enable collecting physiological
data about their wearer.
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A. Context

Adapting a Smart Object consists of (re-)configuring its
electronic components, namely the integrated sensors. These
sensors have the capability to process data thanks to software
snippets that are embedded and deployed inside them. This
characteristic is what we call smart in the context of this
paper. Software components can be installed or uninstalled
depending on the domain and application requirements as well
as the usage context. Every smart sensor is composed of a
processing unit that is used for local data processing. A Smart
Object integrates a set of smart sensors. Unlike basic sensors,
smart sensors provide many functions (or services). They are
designed in order to serve different domains and contexts.
According to the work in [2] "The concept of a smart sensor is
based on its ability to (1) acquire data thanks to its embedded
sensors, (2) process this data thanks to one or more algorithms
its micro-controller implements, (3) output and communicate
indicator values, (4) be reprogrammed and reconfigured". One
can therefore adapt the smart sensor depending on users’ needs
by changing the embedded software components (or snippets).

B. Scenario

In order to illustrate the manner a smart sensor functions,
we introduce the following motivating scenario. This scenario
describes technical details related to the use of an example of
a smart sensor that hosts a three-axis accelerometer of type
LIS2DH that measures acceleration, and a microcontroller.

In this scenario we consider Abdel, a sportsman that prac-
tices cycling and running. Abdel bought a sportswear shorts
equipped with this smart sensor. He wants to monitor his
activity using a Bluetooth Low Energy connection to his Smart
Watch. During a race, he monitors the stride number, an
estimation of the running distance and his average stride fre-
quency. When he practices cycling, he monitors the pedaling
cadence, the "riding out of the saddle" (or dancing) duration
and the road steepness. These six indicators can be computed
from the same raw data given by the LIS2DH embedded in
the smart sensor. What make the difference are the computer
programs implemented and executed by the micro-controller.
When Abdel selects the activity he wants to practice, the
smart sensor modifies its operation by loading the relevant
algorithms. Now, if Abdel wants to start roller-skating, he may
browse the web for an algorithm he can load on his smart
sensor to get an estimation of his skating rate. That algorithm
can be installed on the smart sensor only if: (1) the inputs of
the algorithm can be provided by the LIS2DH, and (2) the
capabilities of the smart sensor’s micro-controller are sufficient
for executing this algorithm.

Through the analysis of this scenario, we can infer details
about Smart Objects structures and specifically the smart
sensors they host. The scenario illustrates how a Smart Object
(i.e. the sportswear shorts) could be reconfigured to different
sports by downloading over the Web software components or
programs that are allowed for public usage. Smart Objects’
(re-)configuration requires a set of software components that
may be already installed in the smart sensor or ready to be

downloaded and installed. In this case, the hardware compo-
nents remain unchanged. The (re-)configuration is possible if
the Smart Object has the capability to reconfigure its smart
sensors, change its communication parameters, and change the
code that is executed by its micro-controller, to satisfy the new
configuration.

III. RELATED WORK

(Re-)configuration (or adaptation) implies loading and un-
loading either statically or dynamically software components
or setting up the smart sensors’ parameters in order to obtain
the required performance. In general, (re-)configuration is
related to the smart sensor adaptation by adding new functions
(or services) or deleting stale ones. It represents a challenging
and difficult task either for software developers or for the smart
sensor designers. Indeed, smart sensors are characterized by
their constrained and limited resources that very often hamper
their (re-)configuration. Therefore, the pending issue is how
to trigger the (re-)configuration of the software embedded
inside the smart sensor while taking into account its limited
constraints and the application or domain requirements.

A literature review and analysis regarding (re-)configuration
mechanisms reveals that the main drawbacks of existing solu-
tions are due to the constrained resources of sensors. Compo-
nent based solutions seem to be the most efficient regarding
resource consumption. Indeed, this modular (re-)configuration
approach is by far the most efficient and is flexible enough to
accommodate for new requirements, while accounting for the
severe resource constraints imposed during (re-)configuration.
Among those solutions, the FiGaRo [3] approach offers a
dynamic (re-)configuration approach for distributed software
components in a sensor network. Think [4] is an implemen-
tation of the Fractal component model [5] which takes into
account the specific constraints of embedded systems, includ-
ing sensor networks, and provides a fine (re-)configuration of
software components. OpenCom [6] provides a platform for
(re-)configuring software components at runtime. It is based on
a generic component model for creating system applications
that are independent of the platform environment. Another
component-based distributed (re-)configuration approach is the
WiSeKit middleware proposed in [7] and [8]. This middleware
provides an abstraction layer for developing applications on
the sensor network . The code is developed according to the
requirements of adaptability at the application level. RE-
MOWARE [9], RUNES [10], FlexCup [11] and LooCI [12],
focused on (re-)configurations of a single sensor.

The (re-)configuration in most of these mechanisms is at
the middleware level, which makes any adaptation of the
mechanism cumbersome and difficult. The (re-)configuration
mechanism also focuses on (re-)configuration related to the
physical characteristics of the components, does not take
into account their treatments or equivalent treatments, and
neglects the semantics of their processing logic. Although
these mechanisms are inspired by the literature developed in
the IoT domain, we adopt in our approach a higher-level (re-
)configuration decision-making. It is also done in a declarative
manner something that makes its modification quite easy
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TABLE I
EVALUATION OF THE (RE-)CONFIGURATION MECHANISMS

Solutions Reprogramming
paradigm

Runtime
plateform

Reconfiguration level Distributed/local re-
configuration

reconfiguration approach

FiGaRo [3] Components based Contik Application Layer Distributed Based on programming models
LooCI [12] Components based SunSPOT Services Local Based on interaction models
FlexCup [11] Components based TinyOS Application Layer Local Based on meta-data
OpenCom [6] Components based Indep. Middleware Distributed Based on a components graph
Think [4] Components based Indep. All layers Distributed Based on meta-models + components models
RUNES [10] Components based Contiki Middleware Local Not specified
WiSeKit [7] Components based Indep. Middleware Distributed Based on services API
REMOWARE [9] Components based Indep. Middleware Local Based on services API

(adaptation of the (re-)configuration mechanism itself). Table I
summarizes the main criteria of these solutions.

IV. PROPOSED APPROACH

A. Modeling requirements

Before exploiting or re-configuring a Smart Object, it is
compulsory to specify both its structure and its behavior. We
define a Smart Object as a real-world physical object equipped
with sensors or actuators that transcend its original use to offer
new services and new features. A Smart Object is equipped
with electronic components to communicate and exchange
data with other physical or digital entities on a local network
or on the internet. A Smart Object is therefore described by
its components (or its structure) and its behavior (the services
it offers or its reactions to external stimuli).

A Smart Object may be represented or may have a con-
ceptual structure composed of three elements: the primary
object component, the application domain component and the
different electronic components. This latter contains concepts
that describe the hardware and software components inte-
grated inside the primary object or that augment it. These
concepts include the ones describing sensors, actuators, sensor
networks, communication systems and protocols. They also
include concepts related to the different possible treatments
(processing logic) qualifying the behavior of these electronic
components. However, hardware components and software
components can be separated into two broad categories.

We identify four entities that guide the modeling of a Smart
Object. These entities are the Primary Object, the Electronic
Components, the Processing Logic and the Application Do-
main as shown in Figure 1. The latter can in turn be broken
down into several sub-domains that will guide the design of
several levels of abstraction. The circles show the different
entities that influence the description of the Smart Object.
At the center of the model, and at the intersection of the
circles, lies the Smart Object (for example, Smart Clothing).
The modeling of a Smart Object results from the modeling of
all the entities that make it up.
• The Primary Object (for example, Clothing) contains

generic concepts for the description of the main com-
ponent of an object as a simple object (for example, a
garment). It includes concepts used to specify the char-
acteristics of primary components (for example, fabric),
shape, color, etc. which are necessary for a complete
description;

Fig. 1. Representation of Smart Object

• The Application Domain defines the requirements of the
domain for which the Object will be manufactured and
used. It groups together all the concepts related to the
application domain and the context of use including the
concepts related to the social context of the application
domain (i.e. the users, their profiles, their needs, their
preferences, etc.);

• The Electronic Components are distinguished by the
nature of the material and features they offer that are
included in the object. An electronic component is com-
posed by other electronic components having different
levels of granularity (sensors, micro-controller, etc.);

• The Processing logics are processing software chunks (or
snippets) embedded inside the micro-controller of a smart
sensor. This allows modeling and implementing the iden-
tified functions in response to functional requirements.

This analysis step related to the extraction and modeling of
requirements of all the entities structuring a Smart Object
and any other specific object (for example, a smart garment),
makes it possible to infer a set of semantic models which is
important to specify, define and implement. This set concerns a
decomposition of the initial models into more specific and fine
grained modules. In particular, the generic semantic modeling
component of a Smart Garment, for example, is based on
the previous analysis, mainly on the ontology modules of the
SMartSensing ontology (SMS ontology), which we propose,
and where generic and reusable modules are distinct from
those that are more specific.

B. Overall structure of the SMS ontology

The SMS ontology is generic, modular and can be reused
in many different cases related to semantic modeling of
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Smart Objects. It defines the scope and purposes of the
different modules that are necessary for the usage and (re-
)configuration of a Smart Object. As shown in Figure 2,
the SMS ontology is logically decomposed into three main
modules according to the structural components of a Smart
Object, namely: (1) the ontological module of primary object;
(2) the ontological module of the application domain; and
(3) the ontological module of electronic components. The last
module has a higher level of abstraction than the other ones.
It is therefore independent from the application domain and
the primary object. It can be reused for all Smart Objects
and describes the concepts related to smart sensors and the
integrated processing logic. The electronic component ontol-
ogy called the Semantic Smart Sensor Network (S3N) wich
was presented in [2] defines the generic and main module of
the SMS ontology. The S3N ontology is composed of a set of
ontological modules, each of which describe a particular aspect
of a hardware or software component . This ontology consists
of six modules: S3N-Algorithm; S3N-Core; S3N-Datasheet;
S3N-System; S3N-Procedure and S3N-Thing.

Ontological modules for the application domain and the
primary object are both very specific. Therefore they are
only reusable for similar cases. Consequently, they are either
imported or developed as part of a specialization of the
SMS ontology. The SMS ontology was developed as part
of the SmartSensing project for Smart Clothing dedicated
to sports [13]. For the purposes of this project we have
developed a sport ontology and an ontology of measurements
and indicators.

Application
domain module

Electronic
components

module

Primary object
module

SMS ontology for
Smart Objects

Sports ontology
Electronic

components
module

clothing
ontology

SMS ontology for
Smart Garments

of sport

Generic SMS ontology for Smart Objects SMS ontology instantiated for Smart Garments of sport 

Fig. 2. Model of the SMS ontology

These modules are described in the next subsection. The in-
teraction between all these ontological modules, as well as the
reused reference ontologies (i.e. SOSA/SSN [14], the Dolce
Ultralite (DUL) upper ontology [15] and Thing Description
(TD) ontology [16]), is described by the global structure,
illustrated in Figure 3. This structure builds up links and
semantic relationships between the different modules. These
relationships were defined by the global design of a smart
garment, taking into account the scenarios of its exploitation
and its (re-)configuration.

C. Conceptualization and development of the SMS ontology
for Smart Garments dedicated to Sports

The use and (re-)configuration of a Smart Garment dedi-
cated to a given sport requires knowledge about the chosen

sport’s practices and activities, the indicators to be calculated,
and hence the smart sensors to configure. In this section,
we discuss the different ontological modules used during the
exploitation and (re-)configuration phases of a Smart Garment.
We first describe the modules of the generic S3N ontology,
then we describe the two specific modules for the sport
application domain.

1) The generic S3N ontology modules: The goal of the
present work is to provide a semantic representation that
allows to understand and interpret the operations realized by
a smart sensor. In this section, we design and implement the
generic part of the SMS ontology, namely the S3N (Semantic
Smart Sensor Network) module. S3N is a modular ontology,
it describes the hardware components and the processing logic
of a smart sensor. The S3N modules can be used (or imported)
either separately or together, and they all define terms in the
same namespace http://w3id.org/s3n/. They are published
in conformance with the best practices for publication and
metadata using the SEAS innovative publication system [17].
In the rest of the paper, we use the shortened form of the
namespace which is s3n:.
@prefix s3n: <http://w3id.org/s3n/>.

a) The S3N-Algorithm module: The processing logic
integrated into the objects to make them smart and adaptable
according to the requirements of their users is specified via
a set of algorithms. An algorithm is a logical process (a
sequence of operations) used to solve a certain problem. A
specification of an algorithm defines all of its operations as
well as predicates that describe the initial and final states
(s3n:PreCondition and s3n:PostCondition) of its execution.

Thus, the S3N-Algorithm module has been developed to
define the processing logic to be deployed inside the electronic
components and more precisely within the smart sensors.
The S3N-Algorithm module was created as a specialization
of the DUL upper ontology. It is represented in Figure 4
and is identified by http://w3id.org/s3n/S3NAlgorithm. It
describes the flow of data and the dependencies between data.

S3N-Algorithm allows the description of the algorithms in
terms of sets of operations. An s3n:Algorithm is linked to its
operations by the s3n:hasOperation relationship. An algorithm is
composed of at least one operation. An operation can be reused
by several algorithms.

s3n:Algorithm v ∀s3n:hasOperation.s3n:Operation

s3n:Algorithm v≥ 1.s3n:hasOperation.s3n:Operation

Since an algorithm is a sequence of well-defined operations,
each operation (s3n:Operation) has a given position during the al-
gorithm execution. It is therefore assigned a sequence number
of its order of appearance in the execution process.

s3n:SequenceNumber v ∀s3n:ofOperation.s3n:Operation

s3n:SequenceNumber v ∀s3n:forAlgorithm.s3n:Algorithm

s3n:SequenceNumber v= 1.s3n:forAlgorithm.s3n:Algorithm

s3n:forAlgorithm ◦ s3n:hasOperation v s3n:ofOperation

The s3n:ofOperation and s3n:forAlgorithm properties are defined as
follows:

http://w3id.org/s3n/
http://w3id.org/s3n/PreCondition
http://w3id.org/s3n/PostCondition
http://w3id.org/s3n/S3NAlgorithm
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/hasOperation
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/hasOperation
http://w3id.org/s3n/Operation
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/hasOperation
http://w3id.org/s3n/Operation
http://w3id.org/s3n/Operation
http://w3id.org/s3n/SequenceNumber
http://w3id.org/s3n/ofOperation
http://w3id.org/s3n/Operation
http://w3id.org/s3n/SequenceNumber
http://w3id.org/s3n/forAlgorithm
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/SequenceNumber
http://w3id.org/s3n/forAlgorithm
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/forAlgorithm
http://w3id.org/s3n/hasOperation
http://w3id.org/s3n/ofOperation
http://w3id.org/s3n/ofOperation
http://w3id.org/s3n/forAlgorithm
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Fig. 3. Dependency graph between modules of the SMS ontology

Fig. 4. S3N-Algorithm Module

s3n:ofOperation
schema:domainIncludes s3n:SequenceNumber ;
schema:rangeIncludes s3n:Operation .

s3n:forAlgorithm
schema:domainIncludes s3n:SequenceNumber ;
schema:rangeIncludes s3n:Algorithm .

An operation can be implemented by several source codes,
which are program fragments and represented by the concept
s3n:Snippet.

s3n:Operation v ∀s3n:hasImplementation.s3n:Snippet

b) The S3N-Core module: By considering the definition
of a smart sensor we have conceptualized the S3N-Core
module. This module describes smart sensors in terms of
their physical structure as well as their functional adaptability.
The S3N-Core module imports and extends the SOSA/SSN
ontology and S3N-Algorithm module. It is identified by
http://w3id.org/s3n/S3NCore. This module is illustrated in
Figure 5.

The specification of S3N-Core module classes and proper-
ties has been established from the perspectives of (1) com-
ponents, (2) algorithms and their execution, (3) features of
interest and properties, (4) results.

Components of a Smart Sensor: The description of a sensor
in SOSA/SSN is defined by the concept sosa:Sensor as a
subclass of the ssn:System concept. This sensor representation

given by SOSA/SSN meets the requirements of our approach
to describe basic sensors. In the SOSA/SSN ontology, an
ssn:System is composed of several subsystems. A smart sensor is
an assembly of several electronic components, in particular a
set of sosa:Sensor, a s3n:MicroController and a s3n:CommunicatingSystem.
To represent this specificity, S3N-Core extends SOSA/SSN
with three classes:
• s3n:MicroController: A MicroController is a compact inte-

grated circuit containing a processor, a memory, and
input/output (I/O) peripherals on a single chip, and is
designed to govern a specific operation in an embedded
system. It implements and runs procedures.

• s3n:CommunicatingSystem: A Communicating System
can be used to exchange information with other
s3n:CommunicatingSystem on some network.

• s3n:SmartSensor: A SmartSensor is composed of one or
more Sensors together with a s3n:MicroController that im-
plements different Procedures, and make Executions of
these Procedures on the result of the Observations these
Sensors make to output a resulting value for some In-
dicator. This value may then be communicated by some
s3n:CommunicatingSystem.

A smart sensor hosts different components, and can therefore
be considered as a sosa:Platform. Copying the SOSA axiomatic
scheme, S3N asserts that the domain of sosa:hosts also includes
s3n:SmartSensor, while its range also includes s3n:MicroController and
s3n:CommunicatingSystem.

sosa:hosts
schema:domainIncludes s3n:SmartSensor ;
schema:rangeIncludes s3n:Microcontroller ;
schema:rangeIncludes s3n:CommunicatingSystem;
schema:rangeIncludes s3n:SmartSensor .

Then taking advantage of the richer axiomatization of SSN,
s3n:SmartSensor is defined as a sub-class of both sosa:Platform

(an entity that hosts other entities) and ssn:System (unit of
abstraction for pieces of infrastructure that implement Pro-
cedures), while both s3n:MicroController and s3n:CommunicatingSystem

http://w3id.org/s3n/Snippet
http://w3id.org/s3n/Operation
http://w3id.org/s3n/hasImplementation
http://w3id.org/s3n/Snippet
http://w3id.org/s3n/S3NCore
http://www.w3.org/ns/sosa/Sensor
http://www.w3.org/ns/ssn/System
http://www.w3.org/ns/ssn/System
http://www.w3.org/ns/sosa/Sensor
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/CommunicatingSystem
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/CommunicatingSystem
http://w3id.org/s3n/CommunicatingSystem
http://w3id.org/s3n/SmartSensor
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/CommunicatingSystem
http://www.w3.org/ns/sosa/Platform
http://www.w3.org/ns/sosa/hosts
http://w3id.org/s3n/SmartSensor
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/CommunicatingSystem
http://w3id.org/s3n/SmartSensor
http://www.w3.org/ns/sosa/Platform
http://www.w3.org/ns/ssn/System
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/CommunicatingSystem
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Fig. 5. S3N-Core Module

are defined as sub-classes of ssn:System. Finally, we model
the fact that a s3n:SmartSensor contains at least one of each
components.

s3n:SmartSensor v ∃ssn:hasSubSystem.sosa:Sensor

s3n:SmartSensor v ∃ssn:hasSubSystem.s3n:MicroController

s3n:SmartSensor v ∃ssn:hasSubSystem.s3n:CommunicatingSystem

Algorithms and their executions: The S3N-Core module of
the SMS ontology also describes the functioning mode of a
smart sensor. SOSA/SSN follows similar design patterns for
Sensors (that implement Procedures and make Observations),
Actuators (that implement Procedures and make Actuations),
and Samplers (that implement Procedures and make Sam-
plings). As we introduce new sub-types of ssn:System, it is
justified to reuse this pattern for s3n:MicroControllers . Unlike for
Sensors and Actuators that may implement different kinds of
procedures , s3n:MicroControllers are specifically designed to im-
plement sensing-related algorithms as well as adaptation and
(re-)configuration ones. We thus specialize sosa:Procedure and
propose the following pattern instantiation: s3n:MicroControllers
implement some s3n:Algorithm and make s3n:AlgorithmExecution ac-
tivities (property s3n:madeAlgorithmExecution). Parallel to SSN, the
S3N ontology specifies that a s3n:MicroController only makes algo-
rithm execution, implements only and at least one Algorithm.
The axiomatization of this pattern is:

s3n:Algorithm v sosa:Procedure

s3n:MicroController v ∀s3n:madeAlgorithmExecution.s3n:AlgorithmExecution

s3n:MicroController v≥ 1.ssn:implements

s3n:MicroController v ∀ssn:implements.s3n:Algorithm

Property s3n:madeAlgorithmExecution is defined as follows:
s3n:madeAlgorithmExecution
schema:domainIncludes s3n:MicroController ;
schema:rangeIncludes s3n:AlgorithmExecution.

The link between an s3n:AlgorithmExecution and the specific algo-
rithm it used can be made explicit using sosa:usedProcedure.

s3n:AlgorithmExecution v ∀sosa:usedProcedure.s3n:Algorithm

Features of interest and properties: Properties that are
observable (resp. actuatable) by basic sensors (resp. ac-
tuators) are represented in SOSA/SSN by the concept
sosa:ObservableProperty (resp. sosa:ActuatableProperty). Additionally,
other properties are related to the features of interest, such
as the number of steps computed during Abdel’s race in
the Scenario. We define another sub-class of ssn:Property:
s3n:ComputableProperty. This class allows the description of prop-
erties that are computable by the micro-controller.

The execution of an algorithm by the micro-controller
computes a property of a sosa:FeatureOfInterest. An algorithm
execution links to the micro-controller that made it and to
the procedure that was used. An algorithm execution is linked
to the computed property of a feature of interest through
the property s3n:calculatedProperty. This property is defined as
follows:

s3n:AlgorithmExecution v ∀sosa:hasFeatureOfInterest.sosa:FeatureOfInterest

s3n:AlgorithmExecution v= 1.sosa:hasFeatureOfInterest.sosa:FeatureOfInterest

s3n:MicroController v ∀s3n:computes.s3n:ComputableProperty

s3n:ComputableProperty v ssn:Property

Results: The result of an s3n:AlgorithmExecution may be a
literal (using sosa:hasSimpleResult) or an instance of sosa:Result

(using sosa:hasResult), in which case it may additionally be an
instance of s3n:Error and potentially have a s3n:hasCause.

c) The S3N-System module: This module describes the
operating capabilities related to components deployed on a
smart sensor. The SOSA/SSN ontology specifies a set of
capabilities in the SSN-System module. The S3N-System
module imports SSN-System and adds new concepts for
the capabilities related to integrated components in a smart
sensor, namely the micro-controller and the communication
system: (1) s3n:Memory for s3n:MicroController(s): the memory of
the micro-controller under the specified conditions; and (2)
s3n:MaximumBandwidth for s3n:CommunicatingSystem(s): the maximum
bandwidth of communicating equipment under specified con-
ditions. The S3N-System module has URL http://w3id.org/s3n/
S3NSystem. Figure 6 illustrates this module.

http://www.w3.org/ns/ssn/System
http://w3id.org/s3n/SmartSensor
http://w3id.org/s3n/SmartSensor
http://www.w3.org/ns/ssn/hasSubSystem
http://www.w3.org/ns/sosa/Sensor
http://w3id.org/s3n/SmartSensor
http://www.w3.org/ns/ssn/hasSubSystem
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/SmartSensor
http://www.w3.org/ns/ssn/hasSubSystem
http://w3id.org/s3n/CommunicatingSystem
http://www.w3.org/ns/ssn/System
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/MicroController
http://www.w3.org/ns/sosa/Procedure
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/AlgorithmExecution
http://w3id.org/s3n/madeAlgorithmExecution
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/Algorithm
http://www.w3.org/ns/sosa/Procedure
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/madeAlgorithmExecution
http://w3id.org/s3n/AlgorithmExecution
http://w3id.org/s3n/MicroController
http://www.w3.org/ns/ssn/implements
http://w3id.org/s3n/MicroController
http://www.w3.org/ns/ssn/implements
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/madeAlgorithmExecution
http://w3id.org/s3n/AlgorithmExecution
http://www.w3.org/ns/sosa/usedProcedure
http://w3id.org/s3n/AlgorithmExecution
http://www.w3.org/ns/sosa/usedProcedure
http://w3id.org/s3n/Algorithm
http://www.w3.org/ns/sosa/ObservableProperty
http://www.w3.org/ns/sosa/ActuatableProperty
http://www.w3.org/ns/ssn/Property
http://w3id.org/s3n/ComputableProperty
http://www.w3.org/ns/sosa/FeatureOfInterest
http://w3id.org/s3n/calculatedProperty
http://w3id.org/s3n/AlgorithmExecution
http://www.w3.org/ns/sosa/hasFeatureOfInterest
http://www.w3.org/ns/sosa/FeatureOfInterest
http://w3id.org/s3n/AlgorithmExecution
http://www.w3.org/ns/sosa/hasFeatureOfInterest
http://www.w3.org/ns/sosa/FeatureOfInterest
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/computes
http://w3id.org/s3n/ComputableProperty
http://w3id.org/s3n/ComputableProperty
http://www.w3.org/ns/ssn/Property
http://w3id.org/s3n/AlgorithmExecution
http://www.w3.org/ns/sosa/hasSimpleResult
http://www.w3.org/ns/sosa/Result
http://www.w3.org/ns/sosa/hasResult
http://w3id.org/s3n/Error
http://w3id.org/s3n/hasCause
http://w3id.org/s3n/Memory
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/MaximumBandwidth
http://w3id.org/s3n/CommunicatingSystem
http://w3id.org/s3n/S3NSystem
http://w3id.org/s3n/S3NSystem
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Fig. 6. The S3N-System module

d) The S3N-Procedure module: This module defines
the different characteristics of processing logic that can be
implemented on a smart sensor, and specifically on its micro-
controller. The S3N-Procedure module has the URL http:
//w3id.org/s3n/S3NProcedure. It is illustrated in Figure 7. It extends
SOSA/SSN by adding a module to describe the characteristics
of the procedures implemented by the systems. The design
of the S3N-Procedure module is strongly inspired by the
SSN-System and S3N-System modules. The S3N-Procedure
module is designed to describe the properties of procedures
such as duration, computational cost, storage cost, and so on,
under specified conditions such as the input size. This ex-
tension uses the terms s3n:ProcedureFeature, s3n:hasProcedureFeature,
s3n:hasProcedureProperty, and s3n:ProcedureProperty. To define a rela-
tionship between an entity and one of its properties, the SSN
ontology defines the property ssn:hasProperty (and its inverse
ssn:isPropertyOf).

sosa:Procedure v ∀s3n:hasProcedureFeature.s3n:ProcedureFeature

s3n:ProcedureFeature v ∀s3n:hasProcedureProperty.s3n:ProcedureProperty

The class s3n:ProcedureFeature describes normal characteristics
of a process under certain conditions such as a calcula-
tion exception. Examples of normal characteristics include
complexity or calculation cost. The s3n:ProcedureProperty class
describes an identifiable and observable property that repre-
sents the characteristics of a process to perform an expected
result. We reuse the property ssn:forProperty to link a feature
of a procedure to the property for which the feature has
been described. We then add procedure properties as sub-
classes of s3n:ProcedureProperty. The s3n:ComputationalCost procedure
property is defined for any procedure, and the s3n:TimeComplexity

and s3n:SpaceComplexity properties are specifically defined for
s3n:Algorithm(s). These properties can be used to model the fact
that an algorithm may have different capabilities depending on
the activity for which it is used, using s3n:inProcedureCondition.

Fig. 7. S3N-Procedure Module

2) Specific modules of the SMS ontology: The specific
modules describe concepts related to the primary object
and the application domain. In the SmartSensing project
the primary object is a garment and the domain is sports.

To model garments, we reuse the VetiVoc textile modular
ontology [18], which provides a rich vocabulary for clothing.
To model the sport domain and the associated performance
indicators, we developed two modules: the Sport module and
the Measurement and Indicator module.

a) The Sport module: This module specifies the knowl-
edge related to sports activities. It describes sports and classi-
fies them (sport:CollectiveSport or sport:IndividualSport). It links each
sport to its practices and indicators. It offers a model for
referencing sports and describing the constraints associated
with them. Figure 8, shows the conceptual model of the Sport
module.

Fig. 8. Sport Module

b) The Measurement and Indicator (MI) module: This
module specifies and classifies measures and indicators defined
in the project framework. The alignment between the MI
module and the DUL ontology is shown in Figure 9. A
classification of measures and indicators can be created as a
specialization of mi:Measurement and mi:Indicator.

Fig. 9. Measurement and Indicator Module

V. SEMANTIC (RE-)CONFIGURATION OF SMART SENSORS

The (re-)configuration of a smart sensor is defined by the
addition of new functionalities according to the context of
use. Our approach is based on two main aspects: (1) the
declarative aspect of (re-)configuration that takes advantages
of the potentialities offered by ontologies and (2) the fine
granularity of the software components to be installed, namely
the "snippets". This last point is very useful because smart
sensors are constrained devices. In this section, wedescribe
the principle of our semantic approach to (re-)configuration
of smart sensors, then we describe the proposed mechanism.

A. Reconfiguration Principles

A smart sensor (s3n:SmartSensor) is reconfigured upon a user’s
request. For example, in the scenario of Section II-B, when
Abdel changes his sporting activity, the sensor integrated in
his shorts must return new indicator values related to his new
sporting activity. Thus, these are new performance indicators

http://w3id.org/s3n/S3NProcedure
http://w3id.org/s3n/S3NProcedure
http://w3id.org/s3n/ProcedureFeature
http://w3id.org/s3n/hasProcedureFeature
http://w3id.org/s3n/hasProcedureProperty
http://w3id.org/s3n/ProcedureProperty
http://www.w3.org/ns/ssn/hasProperty
http://www.w3.org/ns/ssn/isPropertyOf
http://www.w3.org/ns/sosa/Procedure
http://w3id.org/s3n/hasProcedureFeature
http://w3id.org/s3n/ProcedureFeature
http://w3id.org/s3n/ProcedureFeature
http://w3id.org/s3n/hasProcedureProperty
http://w3id.org/s3n/ProcedureProperty
http://w3id.org/s3n/ProcedureFeature
http://w3id.org/s3n/ProcedureProperty
http://www.w3.org/ns/ssn/forProperty
http://w3id.org/s3n/ProcedureProperty
http://w3id.org/s3n/ComputationalCost
http://w3id.org/s3n/TimeComplexity
http://w3id.org/s3n/SpaceComplexity
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/inProcedureCondition
http://w3id.org/sport/CollectiveSport
http://w3id.org/sport/IndividualSport
http://w3id.org/MI/Measurement
http://w3id.org/MI/Indicator
http://w3id.org/s3n/SmartSensor
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(mi:PerformanceIndicator) to calculate. This infers new requirements
that the smart sensor must be able to answer to by installing
and executing appropriate algorithms.

The execution of an algorithm is described using the
S3N-Algorithm module. This is done by the execution of
a set of s3n:Snippets. These snippets are fragments of code
which are reusable by several s3n:Algorithms. We define a
configuration as a set of snippets to install in a smart
sensor to execute a given algorithm (Configuration =
{snippet}). Because of the limited capabilities of a smart
sensor, it is important to reconfigure code only if necessary.
In other words, a smart (re-)configuration would install
only snippets that do not already exist in the s3n:Memory

of the s3n:MicroController of the s3n:SmartSensor. Thus, during
the (re-)configuration of a smart sensor (for example,
<http://example.org/data/SMSACTI>) two important points
must be checked: (1) the smart sensor has adequate
basic sensors (sosa:Sensor), i.e., the integrated basic sensors
provide the right measurements. For example algorithm
<http://example.org/data/HydrationAlertAlgorithm>

calculates indicator <http://example.org/data/Hydration-

Rate>. This algorithm will need two measure-
ments, namely, temperature and acceleration, thus
<http://example.org/data/SMSACTI> should incorporate
at least one accelerometer and one thermometer. (2) the
capabilities of the microcontroller are satisfying, i.e., it
has sufficient memory capacity to store code fragments,
temporary data or persistent data for calculation.

B. Semantic mechanism of reconfiguration
Let (C) be the configuration of a smart sensor for a given

sport. The sequence of snippets to be installed or already
installed in this smart sensor. This configuration (C) refers
to a plan (P) of execution of these Snippets. When the user
decides to change the use of his smart sensor (integrated with
the smart garment) for another sport, the configuration of the
smart sensor must change. All the following steps are then
performed:

1) The user reports the change of activity;
2) SPARQL queries are executed whose parameters are

based on the new usage context (the new sport);
3) The reasoning engine runs the queries to select the new

snippets required;
4) The result of the selection is refined considering the

constraints of the smart sensor such as the remaining
memory space, the size of the snippets needed for the
new use, etc.;

5) The final list of snippets is identified with a new execu-
tion plan (P’);

6) If (re-)configuration is possible, the description of this
configuration is sent to the smart sensor;

7) The smart sensor compares snippets available locally
with what is required;

8) The smart sensor triggers the operations required to
uninstall, and install the new missing snippets.

Algorithm 1 shows the set of instructions to be executed
after choosing a sport and a performance indicator to com-
pute. Smartsensor, sport and indicator are input variables.

This (re-)configuration mechanism was designed during the
construction of the ontological modules S3N-Algorithm, S3N-
Core, MI and Sport. A set of SPARQL queries and inference
rules has been designed and developed to address the different
possible cases of (re-)configuration of a smart sensor (see
section VI-B). The developed queries are executed during
the different steps of the (re-)configuration mechanism. As
an example, the query below returns the list of performance
indicators for a given sport, which is passed as parameter by
the user using a placeholder variable ?sport:

SELECT DISTINCT ?performanceindicator
WHERE {
?pr a sport:SportingPractice ;

sport:isPracticedin ?sport ;
sport:hasPerformanceIndicator ?performanceindicator.

?performanceindicator a mi:PerformanceIndicator.
} ORDER BY ASC (?performanceindicator)

Display(sport, indicator) ;
ontology ← CreateModel() ;
Tab← Precondition(ontology, indicator) ;
Tab1← PropSmartsensor(ontology, Smartsensor) ;
hard ← Compare(Tab, Tab1) ;
MemorySize_Micro←

MemorySizeMicro(ontology, Smartsensor) ;
ComputationalCost_Snippet ← Snippet(ontology, indicator);
if (MemorySize_Micro ≤ ComputationalCost_Snippet) then

so f t ← 0 ;
else

so f t ← 1 ;
end
if hard = 0 then

Display"Hardware check failed." ;
else

Display "Hardware check passed." ;
if so f t = 0 then

Display "Memory check failed." ;
else

Display "Memory check passed." ;
E xecutePlan(ontology, indicator) ;

end
end

Algorithm 1: Algorithm for the (re-)configuration.

VI. PROOF OF CONCEPT FOR SEMANTIC
RECONFIGURATION

This section reports on a SmartSensing application devel-
oped to take into consideration the different (re-)configuration
scenarios for a smart sensor.

A. SMS ontology assertions examples

Assertions of the knowledge database are instantiations of
the SMS ontology modules. They are defined to describe the
environment and needs of the SmartSensing project users.
Below are the namespaces and prefixes used in the Turtle
snippets.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix sosa: <http://www.w3.org/ns/sosa/> .
@prefix ssn: <http://www.w3.org/ns/ssn/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix qudt-1-1: <http://qudt.org/1.1/schema/qudt#> .
@prefix qudt-unit-1-1: <http://qudt.org/1.1/vocab/unit#> .

http://w3id.org/MI/PerformanceIndicator
http://w3id.org/s3n/Snippet
http://w3id.org/s3n/Algorithm
http://w3id.org/s3n/Memory
http://w3id.org/s3n/MicroController
http://w3id.org/s3n/SmartSensor
http://www.w3.org/ns/sosa/Sensor
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@prefix dul: <http://www.ontologydesignpatterns.org/ont
/dul/DUL.owl#> .

@prefix mi: <http://w3id.org/MI/> .
@prefix s3n: <http://w3id.org/s3n/> .
@prefix sport: <http://w3id.org/Sporst/> .
@prefix ssn-system: <http://www.w3.org/ns/ssn/systems/> .
@base <http://example.org/data/> .

Examples of collective sports :

<Basketball> rdf:type sport:CollectiveSport ;
rdfs:label "Basketball"@en ;
rdfs:comment "Basketball is a Collective Sport."@en .

<Football> rdf:type sport:CollectiveSport ;
rdfs:label "Football"@en ;
rdfs:comment "Football is a Collective Sport."@en .

<Rugby> rdf:type sport:CollectiveSport ;
rdfs:label "Rugby"@en ;
rdfs:comment "Rugby is a Collective Sport."@en .

The performance indicators for the Running :

<LongTrailRunning> rdf:type sport:SportingPractice ;
rdfs:label "Long trail running"@en ;
rdfs:comment "Long trail running is a practice of

Running."@en ;
sport:isPracticedin <Running> ;
sport:hasPerformanceIndicator <CaloriesConsumedNumber> ,

<HydrationRate> , <StepNumber> , <AverageSpeed> ,
<Tiredness> , <Geolocalisation> .

Declaration of the algorithm associated with calculating calo-
ries consumed :

<AlgoCaloriesConsumed> rdf:type s3n:Algorithm ;
rdfs:label "Algo calories consumed"@en ;
rdfs:comment "Algo calories consumed is an algorithm."@en

;
s3n:hasOperation <AccelerationOperation> ,

<SpeedOperation> , <DistanceOperation> ,
<CaloriesConsumedOperation> ;

s3n:hasPostCondition <CaloriesConsumedNumber> ;
s3n:hasPreCondition <Acceleration>.

Declaration of an operation of the ’AlgoCaloriesConsumed’
algorithm and its implementation by a snippet :

<AccelerationOperation> rdf:type s3n:Operation ;
rdfs:label "Acceleration Operation"@en;
rdfs:comment "Acceleration operation is an Operation."@en;
s3n:hasImplementation <AccelerationSnippet>;
s3n:hasProcedureFeature <AccelerationFeature>.

<SequenceAccOpAlgoCalCons> rdf:type s3n:SequenceNumber;
s3n:ofOperation <AccelerationOperation> ;
s3n:forAlgorithm <AlgoCaloriesConsumedNumber> ;
s3n:hasSequenceNumberValue "1"^^xsd:int .

Assigning a value for the memory space needed to execute the
’AccelerationOperation’ operation :

<AccelerationFeature> rdf:type s3n:ProcedureFeature;
rdfs:label "Acceleration feature"@en;
rdfs:comment "Acceleration feature is a Procedure

Feature."@en;
s3n:hasProcedureProperty <AccelerationSpace>.

<AccelerationSpace> rdf:type s3n:ProcedureProperty;
rdfs:label "Acceleration space"@en;
rdfs:comment "Acceleration space is Procedure

Property"@en;
s3n:hasProcedurePropertyValue "16"^^xsd:int ;
qudt-1-1:unit qudt-unit-1-1:Bit.

Addition of a smart sensor and its components :

<SmartSportSMS16> rdf:type s3n:SmartSensor ;
rdfs:label "SmartSportSMS16"@en ;
rdfs:comment "SmartSportSMS16 is a \rev{smart sensor} of

Sport."@en ;
ssn:hasSubSystem <TemperatureLM124/1> ,

<MicoControllerDS4830/20>.
<TemperatureLM124/1> rdf:type sosa:Sensor ;
rdfs:label "TemperatureLM124 #1"@en ;

rdfs:comment "TemperatureLM124 #1 is a Temperature
sensor."@en ;

sosa:observes <Temperature> .
<MicoControllerDS4830/20> rdf:type s3n:MicroController ;
rdfs:label "MicoControllerDS4830 #20"@en ;
rdfs:comment "MicoControllerDS4830 #20 is a

Mico-Controller, it is of DS4830 Reference."@en ;
ssn-system:hasSystemCapability

<SystemCapabilityMicroDS4830> .

Specify the memory capacity of a microcontroller :

<MemoryDS4830> rdf:type ssn-system:SystemProperty ;
rdfs:label "MemoryDS4830"@en ;
rdfs:comment "MemoryDS4830 is a memory of

Mico-ControllerDS4830."@en ;
s3n:hasSystemPropertyValue "16"^^xsd:int ;
qudt-1-1:unit qudt-unit-1-1:Bit.

B. Using the SmartSensing application for reconfiguration

Abdel connects to his application via the interface in Figure
10. He can then choose the sport to exercise and the perfor-
mance indicator to compute. The result displayed through the
application is based on Abdel’s choice and the smart sensor
he owns. Thus, we have chosen three scenarios to illustrate
the use of the (re-)configuration mechanism and its interaction
with the knowledge base defined in this work.

Scenario 1.Abdel owns the material ’SmartSportSMS21’
that is a smart sensor containing two sensors: a gyroscope
and an accelerometer. Abdel chooses to calculate the body
temperature for the sport ’Basketball’. The algorithm that
computes this indicator needs the measurement of temperature
as a pre-condition. Since the smart sensor does not contain a
temperature sensor, operation is not possible. Figure 11 shows
the displayed result.

Scenario 2. The same user with the same SmartSensor
changed the sport and the indicator. In this scenario, Abdel
wants to compute his fatigue rate by practicing ’football’. For
the calculation of this indicator (Tiredness), we need acceler-
ation as a precondition. The SmartSensor in this case contains
the hardware (sensor) needed to compute this indicator, but
the memory of its microcontroller is insufficient. Figure 12
shows the displayed result.

Scenario 3. The user chooses now to compute his location
during the practice of running sport. The constraints in soft-
ware and hardware are satisfied. He can thus begin his activity
(see Figure 13).

The snippets to be installed on the hardware and their exe-
cution plan are sent back to the smart sensor. For example, the
execution plan for algorithm <Geolocalisation> on smart sensor
<SmartSportsSMS21> may consist of the following list of snip-
pets: <PositionSnippet>, <LatitudeSnippet>, <LongitudeSnippet>,
<AltitudeSnippet>, <LocationSnippet>.

VII. CONCLUSION

In the present paper we have tackled issues related to
semantic modeling and representation of Smart Objects. We
proposed for that aim the SMS ontology, which is a set of
ontological modules that extend SOSA/SSN, DUL, and WoT
TD, and allows to describe the structure and behavior of
Smart Objects. Based on these ontologies, we also proposed a
semantic Web based approach that enables to deal semantically
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Fig. 10. SmartSensing Ap-
plication: to connect.

Fig. 11. Result of the Sce-
nario 1.

Fig. 12. Result of the Sce-
nario 2.

Fig. 13. Result of the Sce-
nario 3.

with the (re-)configuration of the embedded behavior of Smart
Objects. The (re-)configuration mechanism makes decisions
about the software snippets to install or uninstall in order to
answer accurately and on time to the domain’s requirements. It
is equally driven by the Smart Objects characteristics and their
usage context. The novelty of our approach with respect to
the related work described in Section III relies in the fact that
it is semantic based, therefore the (re-)configuration decision
is not hard coded but inferred dynamically according to the
characteristics of the Smart Object and its usage context and
domain. Its application to the smart sensor is therefore done
at runtime. We aim in the future to reuse the set of ontological
modules of the SMS ontology for two kinds of applications:
the first one is to help developing a Smart cloth ecosystem
that is dedicated for sports. The second kind of application
is to develop a co-design framework for Smart Objects. Both
applications rely on the modularity of the proposed ontologies
along with the inference and reasoning facilities.
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